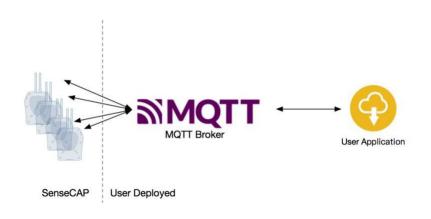
# 私有 MQTT 消息服务 开发指南

管式多层土壤墒情传感器 (4G)

| 一、          | 概述                | . 4 |
|-------------|-------------------|-----|
|             | 1.1 架构与消息流        | . 4 |
|             | 1.2 设备端 MQTT 连接参数 | . 5 |
|             | 1.3 设备私有 Topic    | 6   |
| 二、          | 上行消息              | . 6 |
|             | 2.1 说明            | ٠6  |
|             | 2.2 基本消息结构        | ٠6  |
|             | 表 1 事件类型定义表       | . 7 |
|             | 2.2.1 拆包          | .8  |
|             | 2.3 上报设备状态        | .8  |
|             | 表 2 设备状态字段        | .9  |
|             | 2.4 上报通道信息        | 10  |
|             | 2.5 上报测量数据        | 12  |
| 三、          | 下行消息1             | 13  |
|             | 3.1 说明            | 13  |
|             | 3.2 消息结构          | 14  |
| 四、          | 服务端部署与开发指引        | 15  |
|             | 4.1 Step-by-Step  | 15  |
|             | 4.2 分片包组装         | 15  |
|             | 4.3 设备离线逻辑        | 16  |
| <del></del> | 附录 1              | 17  |


| U17 | 5.1 测量值类型. |
|-----|------------|
| 텔18 | 5.2 传感器类型. |
| 21  | 历史版本       |

#### 一、概述

本文档将介绍管式多层土壤传感器(4G)连接至客户私有 MQTT 服务器时的消息交 互过程和上下行消息的格式,以指导用户自行开发私有 MQTT 消息服务。

#### 1.1 架构与消息流

管式多层土壤传感器(4G)连接至私有 MQTT 服务器的架构图如下所示:



管式多层土壤传感器(4G)通过 MQTT 协议连接至用户自部署的 MQTT 服务器(Broker),基于MQTT 协议,我们定义了数个主题(Topic),承载了设备端数据的上行和服务端指令的下行。用户自行开发 MQTT 消息服务,通常有三种方式: ①二次开发 MQTT Broker,将消息处理置入 MQTT Broker中; ②开发单独的消息处理服务,连接至标准 MQTT Broker,通过订阅、发布主题,接收设备端数据、对设备下发指令; ③混合使用以上两种方式。

## 1.2 设备端 MQTT 连接参数

SensorHub 在发起 MQTT 连接时,采用的参数为:

Server: 通过配置工具设定的服务器地址

• Port: 通过配置工具设定的服务器端口

• ClientId: d-6-<EUI>, 其中 EUI 为设备出厂时标签标注的 DeviceEui

• Username: 通过配置工具设定的用户名

• Password: 通过配置工具设定的密码

• Timeout: 60s

CleanSession: false

• TLS: false

## 1.3 设备私有 Topic

每个接入设备,都有其私有的 topic 用于消息的发布和接收,设备在接入 MQTT 后,首先订阅需要的 topic,通过订阅消息,设备可以接收云端的下发指令并进行处理;通过发布 topic,将设备状态和采集数据上传给服务器。Topic 的通用形式为:

• 发布(下行): \$SHADOW/ipnode/<DeviceEui>/get/config

• 订阅(上行): iot/ipnode/<DeviceEui>/update/#

提示: \$SHADOW 为字符串,无特殊含义; <DeviceEui>代表贴纸上的 EUI; #为MQTT topic 通配符,第二章将分别介绍其通配的多个上行 topic。

## 二、上行消息

## 2.1 说明

管式多层土壤传感器(4G)的上行消息包括:设备状态上报、通道信息上报和传感器测量数据上报。这些消息均是单向的,不需要服务端做出显式的响应,因此我们称之为事件Event。

注意: 管式多层土壤传感器(4G) 所有的上行消息 QoS 均等于 1。

## 2.2 基本消息结构

这是上行消息的基本结构和它所在的 MQTT 主题,其中,主题中的<eventName>包含下表中定义的几种事件类型。Payload 为 MQTT 的消息体,是一段 JSON 格式的字符串。

#### 表 1 事件类型定义表

| eventName            | 说明                           |
|----------------------|------------------------------|
| change-device-status | 上报设备状态和设备信息                  |
| update-channel-info  | 上报通道信息,即每个 RS485 接口上连接了哪些传感器 |
| measure-sensor       | 上报采集到的传感器数据                  |

| 消息字段                                         | 说明                          |  |  |
|----------------------------------------------|-----------------------------|--|--|
| requestId                                    | 由设备产生的随机 ID(一般情况下服务端可忽略此字段) |  |  |
| 毫秒时间戳,通过设备上的蜂窝网络模块获取。注意<br>为消息发出时间,不是传感器采集时间 |                             |  |  |
| intent                                       | 固定为 event                   |  |  |

| type      | 用于拆包,单个完整包为 simple,分片包 cev,分片结束包 fev(详见下文);当此字段缺失时,表示无需组包,即 simple 包。 |  |
|-----------|-----------------------------------------------------------------------|--|
| deviceEui | 固定为 local,表示从本机发出,EUI 可从主题中提取                                         |  |

| events                                       | 事件数组                                 |  |
|----------------------------------------------|--------------------------------------|--|
| name                                         | 事件名称,与主题中的 <eventname>相同</eventname> |  |
| value                                        | 事件内容,下文将针对不同事件类型分别介绍 value 的结构       |  |
| 事件发生时间,毫秒时间戳,以 measure-sensor 事件为此时间为传感器采集时间 |                                      |  |

#### 2.2.1 拆包

管式多层土壤传感器(4G)为内存有限的设备,在上行超长消息时,需要进行拆包。

当 type 字段为 cev 时,表示此消息为超长包的一部分,即分片包,此分片包具有完整的 JSON 结构,只是对 events 数组进行了缩减,以使整个 JSON 字符串长度满足 管式多层土 壤传感器(4G)的内存要求。

- 一般情况下,服务端都不需要处理分片包,除了有以下需求:
- 对于设备通道信息变更的感知,具有极高的实时性要求;

若服务端需要处理分片包,应注意消息幂等性的问题,我们将在 4.2 分片包组装中给出一些建议。

## 2.3 上报设备状态

• Topic: iot/ipnode/<deviceEui>/update/event/change-device-status

```
Payload
"requestId": "XD1711351390",
"timestamp":"1711351380000",
"intent": "event",
"deviceKey":"",
"deviceEui":"local",
"events":[{
"name": "change-device-status",
"value":{
"3000":"72",
"3001":"3.50",
"3502":"2.30",
"3015":"898604B8162280261234",
"3900":"1800",
"3005":"1800"
"timestamp":"1711351380000"
}]
```

#### 表 2 设备状态字段

| 字段编号 | 说明           |
|------|--------------|
| 3000 | 电量百分比,0~100  |
| 3001 | 硬件版本 *       |
| 3005 | 设备状态上报周期,单位秒 |
| 3015 | SIM ★ CCID*  |
| 3502 | 固件版本 *       |
| 3900 | 采集周期,单位秒     |

## 2.4 上报通道信息

上报通道信息的消息定义如下:

• Topic: iot/ipnode/<deviceEui>/update/event/update-channel-info

```
Payload:
{
"requestId":"XD1711351400",
"timestamp":"1711351380000",
"intent":"event",
"type": "simple",
"deviceEui":"local",
"events":[{
"name": "update-channel-info",
"value":[{
"channel":"10",
"sensorId":"24032001",
"sensorType":"6105",
"measurementIds":[4138,4139,4140,4141,4142,4143,4144,4145,4158,4159,4160,4161],
"status":"normal"
}],
"timestamp":"1711351380000"
}]}
```

| 事件字段                                  | 说明         |  |
|---------------------------------------|------------|--|
| requestId 由设备产生的随机 ID(一般情况下服务端可忽略此字段) |            |  |
| timestamp                             | 时间戳,ms(毫秒) |  |
| intent                                | 固定为 event  |  |

| type                  | 用于拆包,单个完整包为 simple,分片包 cev,分片结束包 fev(详见下文);当此字段缺失时,表示无需组包,即 simple 包。 |  |  |
|-----------------------|-----------------------------------------------------------------------|--|--|
| deviceEui             | 固定为 local,表示从本机发出,EUI 可从主题中提取                                         |  |  |
| events                | 事件数组                                                                  |  |  |
| name                  | -name 事件名称,与主题中的相同value 事件内容,下文将针对不同事件类型分别介绍 value 的结构                |  |  |
| value                 | 事件内容,下文将针对不同事件类型分别介绍 value 的结构                                        |  |  |
| channel               | 通道编号                                                                  |  |  |
| sensorId              | 通道对应的传感器的唯一ID                                                         |  |  |
| sensorType            | 通道对应的传感器的类型,详见附录"传感器类型"                                               |  |  |
| measurementIds        | 测量要素的ID,详见附录"测量值类型"                                                   |  |  |
| status 通道状态           |                                                                       |  |  |
| timestamp 时间戳, ms(毫秒) |                                                                       |  |  |

## 2.5 上报测量数据

Topic: iot/ipnode/<deviceEui>/update/event/measure-sensor Payload "requestId":"XD1711351380", "timestamp":"1711351380000", "intent":"event", "type":"simple", "deviceEui":"local", "events":[{ "name":"measure-sensor", "value":[{ "channel":"10", "measureTime":"1711351380000", "measurements":{ "4138":"0.0", "4139":"39.4", "4140":"43.8", "4141":"43.9", "4142":"32.6", "4143":"30.9", "4144":"30.3", "4145":"30.2", "4158":"0.00", "4159":"0.00", "4160":"0.22", "4161":"0.08" } }] }]}

| 消息字段                                                                 | 说明                                                     |  |
|----------------------------------------------------------------------|--------------------------------------------------------|--|
| requestId                                                            | 由设备产生的随机 ID (一般情况下服务端可忽略此字段)                           |  |
| timestamp                                                            | 上传数据时间戳, ms(毫秒)                                        |  |
| intent                                                               | 固定为 event                                              |  |
| type 用于拆包,单个完整包为 simple,分片包 cev,分片结束包见下文);当此字段缺失时,表示无需组包,即 simple 包。 |                                                        |  |
| deviceEui                                                            | 固定为 local,表示从本机发出,EUI 可从主题中提取                          |  |
| events 事件数组                                                          |                                                        |  |
| name                                                                 | -name 事件名称,与主题中的相同value 事件内容,下文将针对不同事件类型分别介绍 value 的结构 |  |
| value 事件内容,下文将针对不同事件类型分别介绍 value 的结构                                 |                                                        |  |
| channel                                                              | 通道编号                                                   |  |
| measureTime                                                          | 测量时间戳, ms(毫秒)                                          |  |
| measurements 测量值,一个传感器可能输出多个测量要素,此对象中 key 为值类型 Id(见附录"测量值类型")        |                                                        |  |

## 三、下行消息

## 3.1 说明

通过下行消息,服务端可以对设备下发简单的控制指令,目前管式多层土壤传感器支持的下行指令有:修改采集周期、重启。

由于管式多层土壤传感器属于周期睡眠型设备,它只在醒来工作期间才连接 MQTT 服务器并订阅下行主题,因此,我们建议服务端在下发消息时标记为 retained。设备端有相应的机制避免 retained 消息中包含的指令被重复执行。

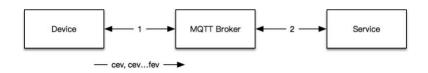
为了减少流量消耗,所有 json 格式的消息在发送前,<mark>都需要进行压缩处理</mark>,去掉换行、空格。如果不压缩,可能会导致设备解析消息失败。

## 3.2 消息结构

```
    Topic: $SHADOW/ipnode/<DeviceEui>/get/config
    Payload
{
        "timestamp": <ms 时间戳>,
        "desire": {
            "3900": { // 修改采集周期
              "ver": "<ms 时间 戳 >",
              "value": <周期时间,单位秒>
        },
            "3910": { // 设备重启
              "ver": "<ms 时间戳>"
        }
    }
}
```

| 消息体字段     | 说明                              |
|-----------|---------------------------------|
| timestamp | 下行消息发送的时刻                       |
| desire    | 配置项                             |
| 键         | 配置项的 ID                         |
| ver       | 配置项版本,使用 ms 时间戳,设备端基于此字段进行去重复处理 |
| value     | 配置项的值                           |

- 该消息 QoS=0, Retain=1。
- 设备收到下行配置之后,比对 ver 版本,当消息配置版本大于设备内配置版本时,执 行配置并记录最新的配置版本。
- "3900" 是修改采集周期的配置项ID
- "3910" 是重启指令码(配置项ID)
- 下行 JOSN 消息实例: {"timestamp": 1601255713000,"desire": {"3900": {"ver":"1601255713000","value":120}}}


## 四、服务端部署与开发指引

#### 4.1 Step-by-Step

- 1 准备 MQTT Broker,并配置认证方式为用户名、密码方式;
- 2 使用上位机配置 SensorHub,连接上述 MQTT Broker,具体参阅《SenseCAP 物联网 传感设备用户手册-多通道数据采集器系列》:
- 3 使用 MQTT 调试工具连接至 Broker, 订阅上行主题, 确认能够收到 SensorHub 发布的消息;
- 4 选取某种编程语言编写服务端程序,程序中的 MQTT Client 以 QoS=1 订阅上行主题,对接收到的消息进行处理、存储、分发;
- 5 若有下行需求,在任意时间以 QoS=0, retain=1 发布消息即可,下行配置为单向控制链,设备端不会回应执行完毕的消息,若需要严格的下行闭环,可通过设备上报的状态来间接实现。

## 4.2 分片包组装

由于网络传输的不确定性,许多网络协议都会处理超时与重传的问题,MQTT 也不例外。在下图所示的拓扑图中,通信路径 1 相对较为简单,一般为直接的 TCP 长连接,或者中间有一个负载均衡器,在 MQTT 连接建立后,可以等同视为一条 TCP socket 连接, 由于设备端发送的 MQTT 消息均采用 QoS 1,基于 MQTT 的服务质量保证机制,我们可以认为 MQTT Broker 收到的分片包是保序的。



通信路径 2 的复杂程度则取决于用户的实际部署架构,用户应自行处理 MQTT 消息的保序。同时,在保证了通信路径 2 上的保序之外,服务端程序在编写时,也应该特别注意消息保序,避免因编程语言的异步特性或者多线程处理不当而破坏消息保序。若通信

路径 2 的架构复杂性导致无法实现保序,那么可在 Broker 中实施二次开发,现场进行分片包的组装。

在一个超长包内的所有分片包 requestId 相等,因此,建议分片包组装的流程为:

- 当接收到 type=cev 的消息时,将其置入以 requestId 为索引的缓存(队列)中;
- 当接收到 type=fev 的消息时,将此包的 requestId 索引的缓存(队列)中的所有消息 取出,加上本 fev 包,合并 events 数组,得到完整 events 数组。

### 4.3 设备离线逻辑

管式多层土壤传感器属于周期睡眠型设备,MQTT 连接状态仅能辅助判断上线状态,无法判断离线状态。我们建议的离线判断逻辑是基于周期,以 N 个周期未收到设备消息为标准判断设备因故障离线,我们建议 N=2.5。

探测到设备离线后,可以从以下几个方面进行初步的排障:

- 1 供电,请检查太阳能板连接是否断开,是否被遮挡;
- 2 SIM 卡帐号是否状态正常,流量是否耗尽;
- 3 连接的传感器是否损坏,出现短路;

# 五、附录

# 5.1 测量值类型

| 测量   | 测量值名称(中文     | 测量值名称(英文)                                           | 测量值范围             | 测量值单      |
|------|--------------|-----------------------------------------------------|-------------------|-----------|
| ID   | )            |                                                     |                   | 位         |
| 4097 | 空气温度         | Air Temperature                                     | -40~90            | °C        |
| 4098 | 空气湿度         | Air Humidity                                        | 0~100             | %RH       |
| 4099 | 光照           | Light                                               | 0~188000          | Lux       |
| 4100 | 二氧化碳         | CO2                                                 | 0~10000           | ppm       |
| 4101 | 气压           | Barometric Pressure                                 | 300~1100000       | Pa        |
| 4102 | 土壤温度         | Soil Temperature                                    | -30~70            | °C        |
| 4103 | 土壤湿度         | Soil Monisture                                      | 0~100             | %RH       |
| 4104 | 风向           | Wind Direction                                      | 0~360             | 0         |
| 4105 | 风速           | Wind Speed                                          | 0~60              | m/s       |
| 4106 | рН           | рН                                                  | 0~14              | рН        |
| 4107 | 光通量          | Light Quantum                                       | 0~2000、<br>0~5000 | umol/m² s |
| 4108 | 电导           | Eletrical Conductivity                              | 0~23              | dS/m      |
| 4109 | 溶解氧          | Dissolved Oxygen                                    | 0~20              | mg/L      |
| 4110 | 土壤体积含水量      | Soil Volumetric Water Content                       | 0~100             | %         |
| 4111 | 土壤电导         | Soil Electrical Conductivity                        | 0~23              | ds/m      |
| 4112 | 土壤温度(三合一传感器) | Soil Temperature(Soil Temperature, VWC & EC Sensor) | -40~60            | °C        |
| 4113 | 每小时降雨量       | Rainfall Hourly                                     | 0~240             | mm/hour   |
| 4115 | 距离           | Distance                                            | 28~250            | cm        |
| 4116 | 浸液           | Water Leak                                          | true / false      |           |
| 4117 | 液位           | Liguid Level                                        | 0~500             | cm        |
| 4118 | 氨气           | NH3                                                 | 0~100             | ppm       |
| 4119 | 硫化氢          | H2S                                                 | 0~100             | ppm       |
| 4120 | 瞬时流量         | Flow Rate                                           | 0~65535           | m3/h      |
| 4121 | 累计流量         | Total Flow                                          | 0~6553599         | m3        |
| 4122 | 氧气浓度         | Oxygen Concentration                                | 0~25              | %vol      |
| 4123 | 水质电导率        | Water Eletrical Conductivity                        | 0~20000           | us/cm     |
| 4124 | 水质温度         | Water Temperature                                   | -40~80            | °C        |
| 4125 | 土壤热通量        | Soil Heat Flux                                      | -500~500          | W/m²      |

| 4126 | 日照时数   | Sunshine Duration         | 0~24    | h         |
|------|--------|---------------------------|---------|-----------|
| 4127 | 太阳总辐射  | Total Solar Radiation     | 0~5000  | W/m²      |
| 4128 | 水面蒸发量  | Water Surface Evaporation | 0~200   | mm        |
| 4129 | 光合有效辐射 | Photosynthetically Active | 0~5000  | umol/m² s |
|      |        | Radiation(PAR)            |         |           |
| 4131 | 响度     | Volume                    | 0~100   | dB        |
| 4133 | 土壤张力   | Soil Tension              | -100~0  | kPa       |
| 4134 | 盐度     | Salinity                  | 0~20000 | mg/L      |
| 4135 | 总溶解固体  | TDS                       | 0~20000 | mg/L      |
| 4136 | 叶面温度   | Leaf Temperature          | -40~85  | °C        |
| 4137 | 叶面湿度   | Leaf Wetness              | 0~100   | %         |
| 4146 | PM2.5  | PM2.5                     | 0~1000  | ug/m³     |
| 4147 | PM10   | PM10                      | 0~2000  | ug/m³     |

测量值类型 Seeed会增量维护,并通过 https://sensecap-statics.seeed.cn/hardware/lorapp/httpserver/src/constants/sensor-name-lang-dictionary.json分发,本文档更新可能存在延迟,请关注上述网址中的最新定义。

## 5.2 传感器类型

| Sensor<br>Type | 传感器名称 (中文) | 传感器名称 (英文)                           | 测量值 ID           |
|----------------|------------|--------------------------------------|------------------|
|                |            |                                      |                  |
| 1001           | 空气温湿度传感器   | Air Temperature and Humidity Sensor  | 4097, 4098       |
| 1003           | 光照强度传感器    | Light Intensity Sensor               | 4099             |
| 1004           | 二氧化碳传感器    | CO2 Sensor                           | 4100             |
| 1005           | 气压传感器      | Barometric Pressure Sensor           | 4101             |
| 1006           | 土壤温湿度传感器   | Soil Moisture and Temperature Sensor | 4102, 4103       |
| 1008           | 风向传感器      | Wind Direction Sensor                | 4104             |
| 1009           | 风速传感器      | Wind Speed Sensor                    | 4105             |
| 100A           | pH 传感器     | pH Sensor                            | 4106             |
| 100B           | 光通量传感器     | PAR Sensor                           | 4107             |
| 100C           | 电导传感器      | EC Sensor                            | 4108             |
| 100D           | 溶解氧传感器     | DO(Dissolved Oxygen) Sensor          | 4109             |
| 100E           | 土壤含水量温度电导传 | Soil Temperature, VWC & EC Sensor    | 4110, 4111, 4112 |
| TOOL           | 感器         | John Temperature, V VV & De Jenson   | 1110, 1111, 1112 |
| 1011           | 雨量传感器      | Rain Gauge                           | 4113             |
| 1013           | 超声波测距传感器   | Ultrasonic Distance Sensor           | 4115             |

| 1014 | 浸液传感器                        | Water Leak Detector                                                | 4116                                           |
|------|------------------------------|--------------------------------------------------------------------|------------------------------------------------|
| 1015 | 液位传感器                        | Liguid Level Sensor                                                | 4117                                           |
| 2001 | RS485 五合一传感器(类型-A)           | RS485 Five-Elememt Sensor(Type-A)                                  | 4097, 4098, 4101,<br>4104, 4105                |
| 2002 | RS485 三合一传感器(类型-A)           | RS485 Three-Elememt Sensor(Type-A)                                 | 4097, 4098, 4101                               |
| 2003 | RS485 四合一传感器(类型-A)           | RS485 Four-Elememt Sensor(Type-A)                                  | 4097, 4098, 4099,<br>4101                      |
| 2004 | RS485 氨气温湿度传感<br>器(类型-A)     | RS485 NH3 Temperature Humidity<br>Sensor(Type-A)                   | 4097, 4098, 4118                               |
| 2005 | RS485 硫化氢温湿度传<br>感器(类型-A)    | RS485 H2S Temperature Humidity<br>Sensor(Type-A)                   | 4097, 4098, 4119                               |
| 2006 | RS485pH 传感器(类型-<br>A)        | RS485 pH Sensor(Type-A)                                            | 4106                                           |
| 2007 | RS485 土壤水分温度传<br>感器(类型-A)    | RS485 VWC Temperature Sensor(Type-A)                               | 4112, 4110                                     |
| 2008 | RS485 土壤水分温度电<br>导率传感器(类型-A) | RS485 VWC Temperature EC<br>Sensor(Type-A)                         | 4112, 4110, 4111                               |
| 2009 | RS485 涡轮流量计(类型<br>-A)        | RS485 Turbine Flowmeter<br>Sensor(Type-A)                          | 4120, 4121                                     |
| 200A | RS485 七合一传感器(类型-A)           | RS485 Seven-Elememt Sensor(Type-A)                                 | 4097, 4098, 4099,<br>4101, 4104, 4105,<br>4113 |
| 200B | RS485 溶解氧传感器(类型-A)           | RS485 Dissolved Oxygen Sensor(Type-A)                              | 4109                                           |
| 200C | RS485 液位传感器(类型-A)            | RS485 Liguid Level Sensor(Type-A)                                  | 4117                                           |
| 200D | RS485 氧气传感器(类型<br>-A)        | RS485 Oxygen Sensor(Type-A)                                        | 4122                                           |
| 200E | RS485 水质温度电导传<br>感器(类型-A)    | RS485 Water Temperature EC Sensor(Type-A)                          | 4123, 4124                                     |
| 200F | RS485 土壤热通量传感<br>器(类型-A)     | RS485 Water Temperature EC<br>Sensor(Type-A)英文名不能修改就要新<br>建一个 ID 了 | 4125                                           |
| 2010 | RS485 日照时数传感器(<br>类型-A)      | RS485 Sunshine Duration Sensor(Type-A)                             | 4126                                           |
| 2011 | RS485 太阳总辐射传感<br>器(类型-A)     | RS485 Total Solar Radiation<br>Sensor(Type-A)                      | 4127                                           |

| 2012 | RS485 水面蒸发传感器(<br>类型-A)   | RS485 Water Surface Evaporation<br>Sensor(Type-A)     | 4128       |
|------|---------------------------|-------------------------------------------------------|------------|
| 2013 | RS485 光合有效辐射传<br>感器(类型-A) | RS485 PAR Sensor(Type-A)                              | 4129       |
| 2014 | RS485 水质温度溶氧传<br>感器(类型-A) | RS485 Temperature and Dissolved Oxygen Sensor(Type-A) | 4124, 4109 |
| 2015 | RS485 土壤热通量传感<br>器(类型-A)  | RS485 Soil Heat Flux Sensor(Type-A)                   | 4125       |
| 2011 | RS485 太阳总辐射传感<br>器(类型-A)  | RS485 Total Solar Radiation<br>Sensor(Type-A)         | 4127       |
| 2012 | RS485 水面蒸发传感器(<br>类型-A)   | RS485 Water Surface Evaporation<br>Sensor(Type-A)     | 4128       |
| 2013 | RS485 光合有效辐射传<br>感器(类型-A) | RS485 PAR Sensor(Type-A)                              | 4129       |
| 2014 | RS485 水质温度溶氧传<br>感器(类型-A) | RS485 Temperature and Dissolved Oxygen Sensor(Type-A) | 4124, 4109 |
| 2015 | RS485 土壤热通量传感<br>器(类型-A)  | RS485 Soil Heat Flux Sensor(Type-A)                   | 4125       |

# 历史版本

| 版本  | 时间        | 更新内容                                        | 撰写人  |
|-----|-----------|---------------------------------------------|------|
| 2.0 | 2021-4-14 | 原参考手册重写为开发指南,并删除<br>SensorHub 以外其它设备类型相关的描述 | Jack |