

Arch Mix is a thin, lightweight development board based on NXP i.MX RT1052 processor(3020 CoreMark/1284 DMIPS @ 600 MHz). This development board comes pre-installed RT-Thread real-time operating system and built-in micro-python. Which makes it suitable for industrial control, especially for scenes with large code and high real-time application requirements.

The i.MX RT1052 is a new processor family featuring NXP's advanced implementation of the Arm Cortex®-M7 core. Currently, the i.MX RT1052 is the highest performing Cortex-M7 solution delivering 3036 CoreMarks, which is 13 times better than the LPC1788 microcontroller. In addition to the high-speed performance it provides fast real-time responsiveness. The i.MX RT1050 also has rich audio and video features, including LCD display, basic 2D graphics, camera interface, SPDIF, and I2S audio interface.

The RT-Thread is an open source IoT operating system for embedded devices. The kernel has real-time multitask scheduling, semaphore, mutex, mail box, message queue, signal etc. This is a lightweight system that loads quickly. For more detail about the RTOS, please refer to the Github Page.

Get One Now 📜

Application Ideas

- Industrial Control
- Smart Building
- Industrial Human Machine Interfaces
- Automation & Process Control
- Robot

Feature

- ARM[®] Cortex[®]-M7 600MHz microcontroller(NXP i.MX RT1052)
- Comes with real-time operating system RT-Thread
- Build-in micro-python
- Ultra-fast system loading speed
- Rich peripheral interface: RMII, CAN, I2C, UART, CSI, I2S, ADC, SPDIF IN/OUT, SWD
- Smaller than other Demo boards of RT1052/1050: 67mm x 39mm

Specification

Parameters	Value
Processor: NXP i.MX RT1052	
Platform	ARM Cortex-M7 MPCore
Frequency	600 MHz
Boot ROM	96KB
ON-Chip RAM	512KB
Memory	
SDRAM	32MB
QSPI Flash	8MB
HyperFlash(Optional)	64MB
Connectivity	
USB 2.0 Host	x1
USB 2.0 OTG, and DC 5V Power In	x1
Boot configuration DIP switch	x1
LED	Power LED x1 User RGB LED x1
Buttons	Reset button x1, On/Off button x1, User button x1
24bit RGB LCD interface	x1
Micro SD card connector	x1
RTC 3V battery connector	x1

Parameters

Value

22Pin header

RMII, CAN, I2C, UART, CSI, I2S, ADC, SPDIF IN/OUT, SWD

 Table 1.Specification

Hardware Overview

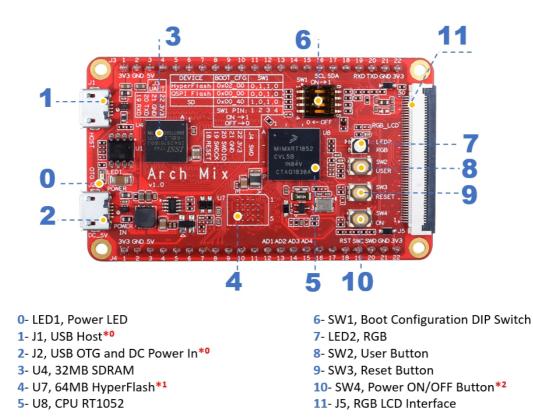
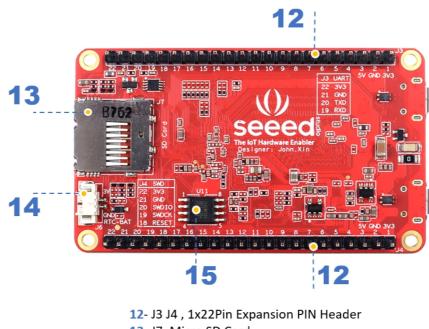



Figure 1. Front Hardware Overview

- 13- J7, Micro SD Card
- 14- J6, RTC CR2032 BAT Connector*3
- 15- U11, 8MB QSPI Flash*1

!!!Annotation ***0** You need to power the Arch Mix by the USB OTG port. For the difference between the USB HOST and USB OTG, Please check here.

<fort color="red">*1</fort> We provide two options for the flash, you can use 64M HyperFlash(U7-default DNP) or 8M QSPI Flash(U11-default selection).

<fort color="red">*2</fort> After the board is powered by USB OTG, you can switch the system on and off by pressing and holding(about 3~5 seconds) this button.

<fort color="red">*3</fort> Please note that this port is a 1.25mm CR2032 Battery port, do not plug in a Li-Po battery. If you want to use the RTC function, you can search the 'CR2032 Battery with Wire Leads' in the Amazon or other web.

Power

Please supply power through the Micro-USB **OTG** port.

!!!Danger - The input power supply voltage is 5V, can not exceed 5.5V.

- All digital and analog IO interface levels are 3.3V. Please do not input more than 3.3V, otherwise the CPU may be damaged.

- RTC's battery-powered interface(J6) can only be connected to a button battery of about 3V, and the voltage cannot exceed 3.6V.

Switch

The Arch Mix can be configured into three different boot modes: HyperFlash, QSPI Flash and SD Card. We use QSPI Flash by default, when you change the boot mode, you need to change the DIP switch to the corresponding position.

DEVICE	BOOT_CFG	SW1 four keys value
HyperFlash	0x02_00	0 , 1 , 1 , 0
QSPI Flash	0x00_00	0,0,1,0
SD	0x00_40	1,0,1,0

Table 2.BOOT Configuration

Button

There are three buttons on this board, please check the function table.

Name	Function	Detail
SW2	User Button	For user configure, for this development board No. 125 pin is SW2
SW3	RESET	System reset, when you press this button the system will restart

Name	Function	Detail
SW4	Power On/OFF	Switch the system on and off by pressing and holding(about 3~5 seconds) this button

 Table 3.Button Function table

LCD Interface

As you can see, there is a 50 pin LCD Interface on this board, it Support up to 1366 x 768 WXGA resolution. In case you need a LCD screen for this board, you can use the LCD8000 serial screen. Check the links below.

LCD from NXP LCD from Embest

Pinout

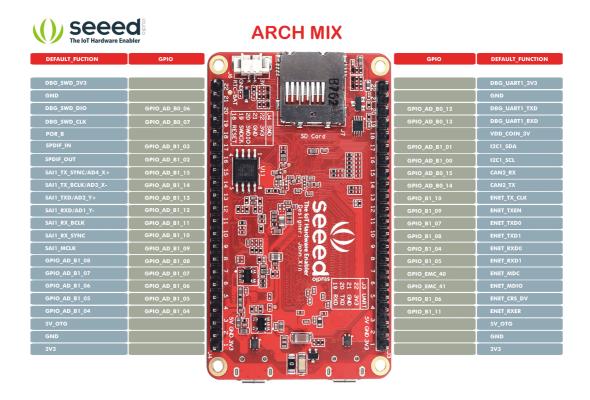


Figure 3. Pinout, ckick the image to view the original file

!!!Tip Most of the pins of NXP i.MX RT1050 processor have multiplexing function, you can click the attachment below to view the detailed pin multiplexing.

Arch Mix Pin Definition Table

Blcok Diagram

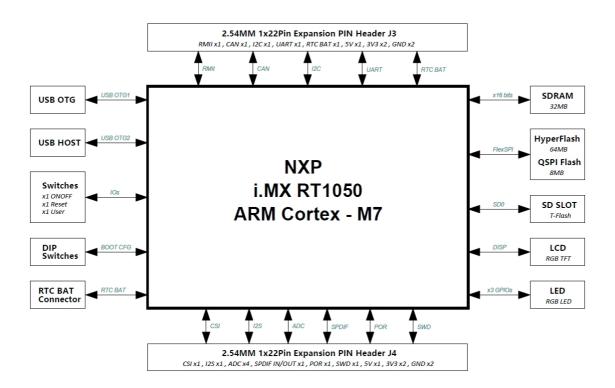
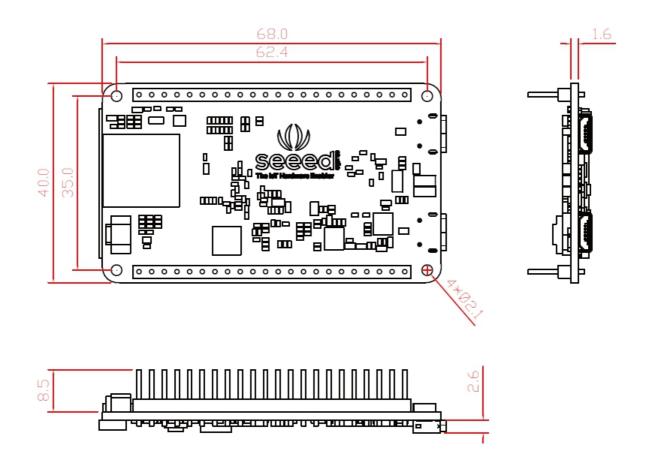



Figure 4. Arch Mix Blcok Diagram, ckick the image to view the original file

Dimension Diagram

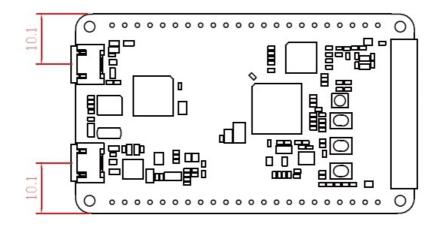
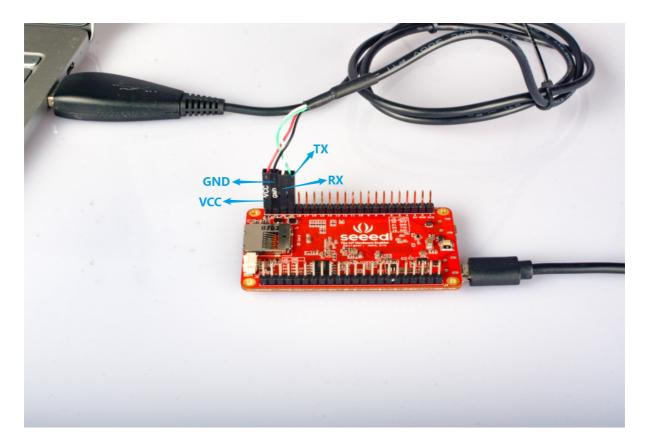


Figure 5. Board Dimension, Unit(mm)

Hardware Connection


Materials required

Arch Mix x1 USB to Serial (TTL) Module&Adapter x1 Micro USB Cable X1 Dual-female jumper x4

• Step 1. Connect Arch Mix and USB to Serial (TTL) Module&Adapter using the Dual-female jumper.

Module	PIN Connection			
Arch Mix	VCC	GND	TXD	RXD
USB to Serial Module	VCC	GND	RX	ТΧ

 Table 4.UART connection

Figure 6. UART Connection

- **Step 2.** Plug the USB to Serial Module to your computer.
- **Step 3.** Power Arch Mix through the OTG port. The on-board Power LED will light up and RGB LED will turn green.

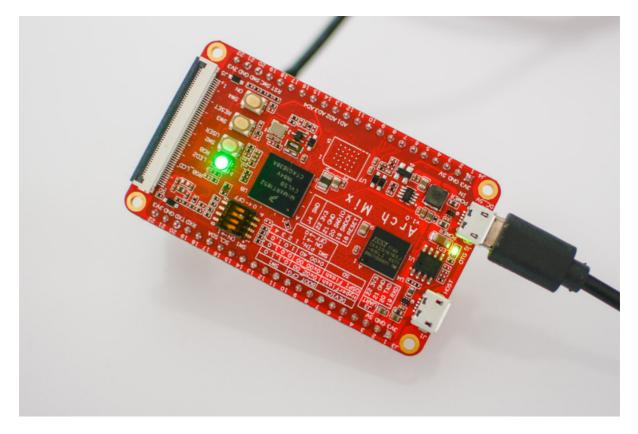


Figure 7. Power On

• Step 4. Open your Computer Management, find Device Manager. You will see The RT-Thread Debug Bridge and the correponding COM port, keep in mind the COM port number. As you can see, this tutorial is COM8.

🔛 Computer Management		– 🗆 X	
File Action View Help			
🗢 🔿 🙍 🖬 📓 🖉 🗖	I I X O		
🛃 Computer Management (Local	> 🖞 Audio inputs and outputs	Actions	
🗸 🎁 System Tools	> 🍃 Batteries	Device Manager	
> 🕑 Task Scheduler	> 🚯 Bluetooth	-	
> 🛃 Event Viewer	> 👰 Cameras	More Actions	
> 🛐 Shared Folders	> 💻 Computer		
> 🜆 Local Users and Groups	> 👝 Disk drives		
> 🔕 Performance	> 🏣 Display adapters		
📇 Device Manager	> 🛺 Human Interface Devices		
✓ 🚰 Storage	> 📷 IDE ATA/ATAPI controllers		
📅 Disk Management	> 🔤 Keyboards		
> 🛃 Services and Applications	> 🥅 Memory technology devices		
	> 🕕 Mice and other pointing devices		
	> 🛄 Monitors		
	> 🚅 Network adapters		
	V 🛱 Ports (COM & LPT)		
	Prolific USB-to-Serial Comm Port (COM8)		
	> E Print queues		
	> Processors		
	> Software devices		
> 🐐 Sound, video and game controllers			
	> 🍇 Storage controllers		
	> 🏣 System devices		
	> Universal Serial Bus controllers		
	V 🖗 Universal Serial Bus devices		
< >	RT-Thread Debug Bridge		
	· · · · · · · · · · · · · · · · · · ·	1	

Figure 8. Check the COM port, ckick the image to view the original file

• **Step 5.** Use the serial port tool (For example: Putty) to read the serial port data. Select the corresponding port, set the baud rate to **115200**.

New Session Wizard					×
	Enter the data n Port: Baud rate: Data bits: Parity: Stop bits:	COM8 115200 8 None 1		erial connection	
< Back Next > Cancel					

Figure 9. Configure the serial tool

• Step 6. Press the Reset button, to refresh the serial output.

RT-Thread

About RT-Thread

The RT-Thread was born in 2006, the license is similar to FreeRTOS and is released in an open source, free way. Unlike FreeRTOS and uC/OS, RT-Thread was released with a middleware platform that included components such as the network, file system, and GUI interface. After a short transition period, the Cortex M MCU was supported in 2009 and received a lot of developer recognition and support. After 2011, due to its mature and stable components, it is widely used in industrial control, electric power, new energy, high-speed rail, medical equipment, water conservancy, consumer electronics and other industries. We've made a comparison table for those three RTOS.

ltem	FreeRTOS	μC/OS	RT-Thread
Kernel size	5KB ROM, 2KB RAM	6KB ROM, 1KB RAM	3KB ROM,1KB RAM
Kernel mechanism	Mailbox X Event ✓ Coroutine ✓	Mailbox 🗸 Event 🗸	Mailbox ✓ Event ✓ Message queue√
Development tools	Support a variety of mainstream tools, full toolchain	Support a variety of mainstream tools, full toolchain	Support a variety of mainstream tools, full toolchain, provide accessibility tools
Debug tools	Shell SystemView	SystemView	Shell Logging system NetUtils ADB SystemView
Testing system	Don't support	Don't support	Unit test framework Auto test system
Support chip and CPU architecture	Support ARM, MIPS, RISC- V, xtensa and other mainstream CPU architecture	Support ARM, MIPS and other mainstream CPU architecture	Support ARM, MIPS, RISC-V and other mainstream CPU architecture
File system	Support FAT	Need authorization	Provide various file systems layer. Support fatfs, littlefs, jffs2, romfs and the popular file systems.
Low power consumption	Partial support	Partial support	Support
GUI	None	µC/GUI	Provide GUI engine
Component ecology	Provide network, debugging, security related components	There are some, but need to be authorized	Provide a software package platform, currently about 100 components, covering a wide range

ltem	FreeRTOS	μC/OS	RT-Thread
loT component	TCP/UDP/AWS	Need authorization	TCP/UDP, Azure, Ayla, Aliyun, onenet, webclient, mqtt, websocket, WebNet

Table 5. Technical and ecological comparison of three embedded operating systems

RT-Thread Resource and Manual

Thanks the RT-Thread official team, they will continue to translate relevant resources and documents, we will publish the latest English documents here.

• RT-Thread Programming-Manual

Running MicroPython

This development board comes pre-installed RT-Thread real-time operating system(RTOS) and built-in micropython, so when you follow the steps above to connect the hardware and power on the system, you will see the system log. The RTOS is a lightweight system which loads very quickly, one or two seconds later, the system starts up and you will see the following interface:

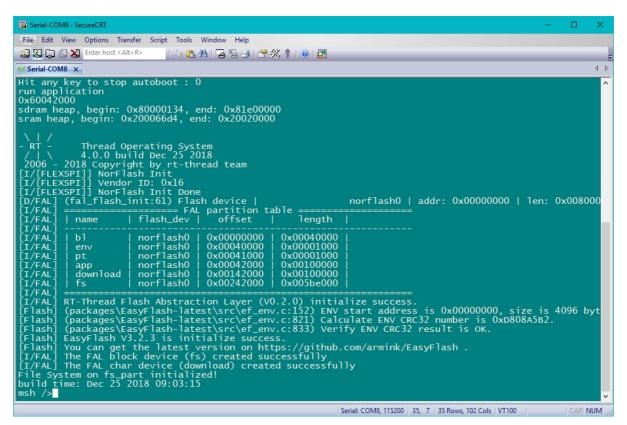


Figure 10. RTOS Startup Interface

Enter python in the Finsh/MSH command line to enter MicroPython's interactive command line -- REPL(Read-Evaluate-Print-Loop). You can see the following interface on the terminal:

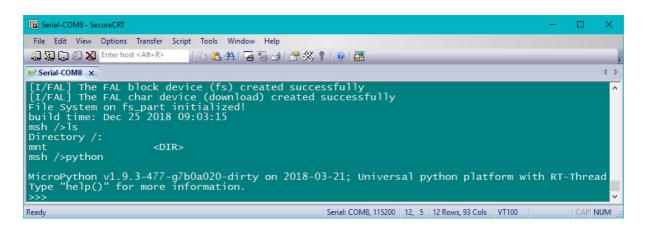


Figure 11. Enter the REPL(Read-Evaluate-Print-Loop)

You can tap ++ctrl+d++ or input quit() or exit() to exit REPL and return to RT-Thread Finsh/MSH.

Paste Mode

MicroPython is a lean and efficient implementation of the Python 3 programming language that includes a small subset of the Python standard library and is optimised to run on microcontrollers and in constrained environments.

- MicroPython has a special paste mode than the normal python interactive environment, which can be used to paste multiple lines of python code at a time.
- At the command line prompt, press ++ctrl+e++, and the prompt will appear: paste mode;
- ++ctrl+c++ to cancel, ++ctrl+d++ to finish. After pasting the code you need to run, press ++ctrl+d++ to exit the paste mode and the code you enter will be executed automatically.

/>pythor MicroPython v1.9.3-477-g7b0a020-dirty on 2018-03-21; Universal python platform with RT-Thread Type "help()" for more information. paste mode; Ctrl-C to cancel, Ctrl-D to finish

Figure 12. Paste Mode

MicroPython Demo

Flashing Light

As you can see there is a RGB LED on this board, usually this LED shows green. This demo will show you how to control the RGB LED.

!!!Note The RGB LED connected to the No. 52 pin of RT1052 chip.

- You can press ++ctrl+e++ to enter paste mode.
- Then paste the following code block into the command line.
- Press the ++ctrl+d++ to exit the paste mode and the code you enter will be executed automatically

```
LED = Pin(("LED1", 52), Pin.OUT_PP)
while True:
    LED.value(1)
    time.sleep_ms(500)
    LED.value(0)
    time.sleep_ms(500)
```

Now you will see the RGB LED flashing.

Button Light

Beside the RGB LED, you can find a USER button, this demo will show you how to use the USER button to control the RGB LED.

!!!Note - The RGB LED connected to the No. 52 pin of RT1052 chip.The button connected to the No. 152 pin of RT1052 chip.

- You can press ++ctrl+e++ to enter paste mode.
- Then paste the following code block into the command line.
- Press the ++ctrl+d++ to exit the paste mode and the code you enter will be executed automatically

```
from machine import Pin
led = Pin(("LED1", 52), Pin.OUT_PP)
key = Pin(("KEY", 125), Pin.IN, Pin.PULL_UP) #Set pin 125 to pull-up input mode
while True:
    if key.value():
        led.value(0)
    else:
        led.value(1)
```

Now the code is running, the RGB LED will turn yellow, and when you press and hold the USER button, the RGB LED will turn green.

Firmware upgrade

This Arch Mix comes pre-installed RT-Thread real-time operating system(RTOS) and built-in micro-python. In case you need to burn the firmware or upgrade the firmware, you can refer the Guide and download the tools.

Arch Mix Firmware Guide

Resources

- [ZIP] Firmware and Tools
- [PDF] PDF Format Wiki
- [PDF] i.MX RT1050 Datasheet

#Set pin 52 to output mode

- [PDF] Dimension Diagram
- **[xlsx]** Arch Mix_v1.0_Pin Function

Tech Support

Please submit any technical issue into our forum or drop mail to techsupport@seeed.cc.