

www.sensirion.com Confidential - Version 2.3.0 - April 2018 1

SGP30 Driver Integration (for Dedicated I2C Hardware)
A Step-by-Step Guide

Preface

1.1. Copy all SGP driver files (.c and .h) into your software project folder.
1.2. Make sure all files are added to your IDE

To use your I2C hardware the file sensirion_configuration.c (or sensirion_configuration.cpp for c++ projects) needs to be
completed. All parts marked with “// IMPLEMENT” have to be replaced with code performing the necessary setup.

2.1. Implement the I2C initialization for your specific hardware.

2.2. Implement sensirion_i2c_read(), which executes a read command on the I2C bus, reading the given
number of bytes. The specified address is the address of the SGP sensor. Write the number of read bytes (count)
into the given data buffer.

Return: 0 if read command is executed successfully, else an error code.

void sensirion_i2c_init()
{
 // IMPLEMENT
}

int8_t sensirion_i2c_read(uint8_t address, uint8_t* data, uint16_t count)
{
 // IMPLEMENT
 return 0;
}

The easiest way to integrate the SGP30 sensor into a
device is Sensirion’s SGP30 driver. This document explains
how to implement the hardware abstraction layer of the SGP
driver and describes the provided API.

Step-by-Step Guide……….…….....…………………...p. 1-5
Revision History..………….…….....…….....................p. 7

COPY FILES TO YOUR PROJECT STEP 1 2 3

IMPLEMENT sensirion_configuration.c STEP 2 1 3

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.3.0 - April 2018 2

2.3. Implement sensirion_i2c_write(), which executes a write command on the I2C bus. The specified
address is the address of the SGP sensor. Write the given number of bytes (count) from the buffer data to the I2C bus.

Return: 0 if the write command is executed successfully, else an error code.

2.4. Implement sensirion_sleep_usec(), which delays the execution for the given time in microseconds.

The SGP driver provides functions to probe the sensor, to get the serial ID, and to measure/read tVOC and CO2-eq.

3.1. Call sgp_probe() to initialize the I2C bus and test if the sensor is available.

Return: 0 if the sensor is detected, else an error code.

3.2. Call sgp_get_serial_id () to readout the serial id of the SGP sensor.

Return: 0 if the command is successful, else an error code.

3.3. Call sgp_get_feature_set_version() to readout the feature set version and product type of the SGP
sensor. If product_type is 0 it is a SGP30 gas sensor, if it is 1 it is an SGPC3 gas sensor.

Return: 0 if the command is successful, else an error code.

3.4. Call sgp_measure_iaq_blocking_read() to start a tVOC and CO2-eq measurement and to readout the
values.

Note: This function blocks the processor while the measurement is in progress.
Return: 0 if the command is successful, else an error code.

3.5. For non-blocking measurement and readout of tVOC and CO2-eq use the two functions sgp_measure_iaq() and
sgp_read_iaq().

Return: 0 if the command is successful, else an error code.

int8_t sensirion_i2c_write(uint8_t address, const uint8_t *data, uint16_t count)
{
 // IMPLEMENT
 return 0;
}

void sensirion_sleep_usec(uint32_t useconds) {
 // IMPLEMENT
}

int16_t sgp_probe(void);

int16_t sgp_get_serial_id (u64 *serial_id);

int16_t sgp_get_feature_set_version (u16 *feature_set_version, u8 *product_type);

int16_t sgp_measure_iaq_blocking_read(uint16_t *tvoc_ppb, uint16_t *co2_eq_ppm);

int16_t sgp_measure_iaq(void);

Note: Some implementations of I2C write/read expect an 8 bit sensor address (instead of 7 bit). In this case use
(address<<1) instead of address in your implementation.

MEASURE IAQ (tVOC / CO2eq) AND SIGNAL VALUES STEP 3 1 2

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.3.0 - April 2018 3

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement result using sgp_read_iaq().

Note: If the measurement is still in progress, this function returns an error code.
Return: 0 if the command is successful, else an error code.

3.6. For best performance and faster startup times, the current baseline needs to be persistently stored on the device before
shutting it down and set again accordingly after boot up.

Use sgp_get_iaq_baseline() to get the baseline.

Return: 0 if the command is successful, else an error code.
Note: If the call is not successful, the baseline value must be discarded. Approximately in the first 15 seconds of
operation after sgp_probe or sgp_iaq_init the call will fail unless a previous baseline was restored.

3.7. Use sgp_set_iaq_baseline() to set the baseline.

Return: 0 if the command is successful, else an error code.
Note: The baseline value must be exactly as returned by sgp_get_iaq_baseline()and should only be set if it’s less
than one week old.

3.8. SGP baseline states

Call sgp_iaq_init() to reset all SGP baselines. The initialization takes up to around 15 seconds, during which sgp_
measure_iaq() output will not change.

If no stored baseline is available after initializing the baseline algorithm, the sensor has to run for 12 hours until the baseline
can be stored. This will ensure an optimal behavior for subsequent startups. Reading out the baseline prior should be avoided
unless a valid baseline is restored first. Once the baseline is properly initialized or restored, the current baseline value should
be stored approximately once per hour. While the sensor is off, baseline values are valid for a maximum of seven days.

3.9. Call sgp_iaq_init() to initialize or re-initialize the indoor air quality algorithm.

int16_t sgp_iaq_init(void);

Return: 0 if the command is successful, else an error code.
Note: sgp_iaq_init() is already called as part of sgp_probe().

int16_t sgp_read_iaq(uint16_t *tvoc_ppb, uint16_t *co2_eq_ppm);

int16_t sgp_get_iaq_baseline (uint32_t *baseline);

int16_t sgp_set_iaq_baseline (uint32_t baseline);

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.3.0 - April 2018 4

3.10. Call sgp_measure_tvoc_blocking_read() to start a tVOC measurement and to readout the value in ppb.

Note: This function blocks the processor while the measurement is in progress.

Return: 0 if the command is successful, else an error code.

3.11. For non-blocking measurement and readout of tVOC use the two functions sgp_measure_tvoc() and
sgp_read_tvoc()

Return: 0 if the command is successful, else an error code.

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement result using sgp_read_tvoc().

Note: If the measurement is still in progress, this function returns an error code.

Return: 0 if the command is successful, else an error code.

3.12. Call sgp_measure_co2_eq_blocking_read() to start a CO2-eq measurement and to readout the value in
ppm.

Note: This function blocks the processor while the measurement is in progress.
Return: 0 if the command is successful, else an error code.

3.13. For non-blocking measurement and readout of CO2-eq use the two functions sgp_measure_co2_eq() and
sgp_read_co2_eq().

Return: 0 if the command is successful, else an error code.

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement result using
sgp_read_co2_eq().

Note: If the measurement is still in progress, this function returns an error code.
Return: 0 if the command is successful, else an error code.

3.14. Call sgp_measure_signals_blocking_read() to start signal measurements and to readout the values.

Return: 0 if the command is successful, else an error code.

Note: This function blocks the processor while the measurement is in progress.

3.15. For non-blocking measurement and readout of signals values use the two functions sgp_measure_signals()
and sgp_read_signals().

Return: 0 if the command is successful, else an error code.

int16_t sgp_measure_tvoc_blocking_read(uint16_t *tvoc_ppb);

int16_t sgp_measure_tvoc(void);

int16_t sgp_read_tvoc(uint16_t *tvoc_ppb);

int16_t sgp_measure_co2_eq_blocking_read(uint16_t *co2_eq_ppm);

int16_t sgp_measure_co2_eq(void);

int16_t sgp_read_co2_eq(uint16_t *co2_eq_ppm);

int16_t sgp_measure_signals_blocking_read(uint16_t *ethanol_signal,
 uint16_t *h2_signal);

int16_t sgp_measure_signals(void);

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.3.0 - April 2018 5

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement results using
sgp_read_signals().

Note: If the measurement is still in progress, this function returns an error code.
Return: 0 if the command is successful, else an error code.

3.16. Call sgp_set_absolute_humidity() to a value greater than 0 and smaller than 256000 mg/m3 to enable the
humidity compensation feature, or write 0 to disable it.
The absolute humidity in g/m3 can be retrieved by measuring the relative humidity and temperature using a Sensirion SHT
sensor and converting the value to absolute humidity with the formula

With AH in g/m3, RH in 0-100%, and t in °C

Note: the value in g/m3 has to be multiplied by 1000 to convert to mg/m3 and any remaining decimal places have to be
rounded and removed since the interface does not support floating point numbers.

Return: 0 if the command is successful, else an error code.

Note: The humidity compensation is disabled by setting the value to 0.
Example: To set the absolute humidity to 13.000 g/m3:

3.17. Call sgp_measure_test() to run the on-chip self-test. This command can be used during production to ensure
the SGP30 is not damaged. A success is indicted by a return code of 0, in which case the value of test_result is
0xd400.

Note: sgp_measure_test()must not be executed after sgp_iaq_init(). If this is needed, the baseline

must be retrieved prior to running sgp_measure_test. After sgp_measure_test, sgp_iaq_init
followed by setting the baseline again is needed to resume IAQ operations.

3.18. Call sgp_get_driver_version() to retrieve the driver version.

Return: The driver version string is returned in the form "major.minor.patchset" e.g. "2.2.1"

int16_t sgp_read_signals(uint16_t * ethanol_signal,
 uint16_t * h2_signal);

int16_t sgp_set_absolute_humidity(uint32_t absolute_humidity);

// Set absolute humidity to 13.000 g/m^3
uint32_t ah = 13000;
sgp_set_absolute_humidity(ah);

// Run the on-chip self-test
uint16_t test_result;
int16_t ret = sgp_measure_test(&test_result);
if (ret != STATUS_OK) {
 // The sensor is likely damaged
}

const char *sgp_get_driver_version(void);

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.3.0 - April 2018 6

REVISION HISTORY

Headquarters and Subsidiaries

Sensirion AG
Laubisruetistr. 50
CH-8712 Staefa ZH
Switzerland

Phone: +41 44 306 40 00
Fax: +41 44 306 40 30
info@sensirion.com
www.sensirion.com

Sensirion Inc., USA
Phone: +1 805 409 4900
info_us@sensirion.com
www.sensirion.com

Sensirion Japan Co. Ltd.
Phone: +81 3 3444 4940
info@sensirion.co.jp
www.sensirion.co.jp

Sensirion Korea Co. Ltd.
Phone: +82 31 345 0031 3
info@sensirion.co.kr
www.sensirion.co.kr

Sensirion China Co. Ltd.
Phone: +86 755 8252 1501
info@sensirion.com.cn
www.sensirion.com.cn

Sensirion AG (Germany)
Phone: +41 44 927 11 66
info@sensirion.com
www.sensirion.com To find your local representative, please visit www.sensirion.com/contact

Date Version Page(s) Changes

October 2016 1.0.0 all Initial release

January 2017 1.0.1 all Add CO2-eq output to the driver

January 2017 1.0.2 all Fixing layout

January 2017 1.1.0 all Add IAQ functions

January 2017 1.1.1 3 Document how long a baseline value is valid

January 2017 1.2.0 3-5 Document baseline documentation

March 2017 1.4.0 3 Update baseline persistence documentation

April 2017 1.5.0 1, 3 SGP30

Mai 2017 2.0.0 all Change interfaces from resistance to ethanol and h2
signals

Mai 2017 2.0.1 all Document signal scaling

August 2017 2.1.0 6 Add humidity compensation, measure_test

August 2017 2.1.1 6 Document driver version

September 2017 2.2.0 2 Document sgp_get_serial_id interface

September 2017 2.2.1 4, 5 Remove outdated notes

April 2018 2.3.0 4 ,5 Signals are not scaled by 512 anymore

