Grove Starter Kit for LaunchPad

About Grove
Grove is a modular, ready-to-use tool set that takes a building block approach to assembling electronics. The Grove system consists of a base shield and a large selection of modules that feature standardized connectors. The base shield allows for easy connection of popular microcontroller devices to interface with the various Grove modules. Each Grove module addresses a unique function & the overall collection of modules expand a wide range of functionality - from a simple push-button to a complex heart rate sensor. Each one comes with clear documentation and demo code to help you get started quickly.

About LaunchPad and BoosterPack
The Texas Instruments LaunchPad ecosystem is a set of low-cost & easy-to-use microcontroller development kits that enable developers to rapidly prototype with modular, open source hardware based on TI silicon. BoosterPacks are plug-in modules that can stack on top of the various

Note that each Grove connector on the Grove Base BoosterPack has nifty pin labels so developers can easily see which pin on the LaunchPad that each Grove connector ultimately makes a connection to.

Each Grove connector features 4 pins:
- VCC / GND / SIG1 / SIG0
 (SIG1 & SIG0 are either both analog, both digital or serial lines)

This is the BoosterPack connector. This is how the Grove Base BoosterPack interfaces to the LaunchPad development kits. Note that each pin is labelled. These pin numbers align with a corresponding Grove connector.

The connector aligns with the BoosterPack pinout standard that is shown below.
LaunchPad kits to add additional functionality, such as sensors, displays, wireless modules & more. The Grove Base BoosterPack is a welcome addition to the LaunchPad/BoosterPack ecosystem, enabling any LaunchPad to interface with the growing offering of Grove modules from Seeed Studio. The Grove Base BoosterPack offers a convenient and easy way for rapid prototypers to use more than one hundred Grove modules with standardized connectors, including sensors, actuators, displays, lights, motors and more. http://www.ti.com/launchpad

About Seeed Studio
Seeed is a hardware innovation platform for makers to grow inspirations into V. Ramu differentiated products. Seeed provides accessible technologies with quality, speed and supply chain knowledge. Seeed helps productize 1 to 1,000 pieces using in-house engineering, supply chain management and agile manufacture forces. Seeed also teams up with incubators, China tech ecosystem, investors and distribution channels to portal Maker startups beyond. http://www.seeedstudio.com/depot/

About Texas Instruments
Texas Instruments Incorporated (TI) is a global semiconductor design and manufacturing company that develops analog ICs and embedded processors. By employing the world's brightest minds, TI creates innovations that shape the future of technology. TI is helping more than 100,000 customers innovate with 80000+ analog ICs & embedded processors, software & the industry's largest sales/support staff. http://www.ti.com

Have Questions?
If you encounter any problem, please refer to the following websites for resources & help.

For all the Grove resources for LaunchPad
www.seeed.cc/s/boosterpack

For the details of Grove system
http://www.seeedstudio.com/wiki/GROVE_System

For tech support for your Grove Base BoosterPack or Starter Kit
http://support.seeedstudio.com

For all the details and support of TI LaunchPad development kits
http://www.ti.com/launchpad

For all details around the Energia software
http://www.energia.nu

For community support, check out http://www.43oh.com

NOTE
This kit is fully compatible with the BoosterPack pin out standard, which is documented here: http://www.ti.com/byob

Most of the LaunchPad development kits from Texas Instruments adhere to this pinout standard enabling support for the Grove Base BoosterPack. The following examples were developed for the MSP-EXP430F5529LP LaunchPad, which features a 40 pin BoosterPack connector. However any 40 pin LaunchPad with Energia support can leverage these tutorials as well. If you are using a 20 pin LaunchPad (i.e. MSP-EXP430G2), jumpers can be used to route the appropriate pins to the various Grove connectors on the Grove Base BoosterPack.

To ensure compatibility, we recommend that you check the BoosterPack and software pin configurations for your specific LaunchPad kit.

If you are using different LaunchPads, please refer to http://energia.nu/ for additional information. You can find the various pin mapping diagrams at: http://energia.nu/guide/pinmapping/

TABLE OF CONTENTS

LEARN MORE ABOUT THE PRODUCT
Getting to know the Grove Base BoosterPack	X
Using the Grove Base BoosterPack	X
Brief overview of the included Grove modules	X
Installing the Energia Development Environment	X

SETTING UP THE ENERGIA IDE
(1) Launch Energia	X
(2) Selecting the Serial Port	X
(3) Selecting your Board	X
(4) Preparing Libraries	X

THE EXAMPLES
(1) Getting Started (Blinking LED)	X
(2) Playing Music (Buzzer)	X
(3) Controlling Other Electronics (Relay)	X
(4) Displaying the Numbers (4-Digit Display)	X
(5) Reading the Potentiometer (Rotary Angle Sensor) X
(6) Sensing the Light (Light Sensor) X
(7) Turning on an LED by Sound (Sound Sensor) X
(8) Is Anybody Here? (PIR Motion Sensor) X
(9) Taking Care of Your Plants (Moisture Sensor) X
(10) Sensing Distance (Ultrasonic Ranger Sensor) X
(11) Feeling the Environment (Temperature Humidity Sensor) X
Advanced Projects X

LEARN MORE ABOUT THE PRODUCT

Getting to know the Grove Base BoosterPack
Below is an overview of the Grove Base BoosterPack. The BoosterPack is organized into 3
types of connectors - Digital, Analog & Serial. Depending on the Grove module you want to
interface with, you need to ensure you plug it into the appropriate connector type. The
BoosterPack has been designed to adhere to the BoosterPack pin out standard so by plugging
a Grove module into one of the connectors, the signals will be routed to the appropriate pins of
the BoosterPack connector.

Also, notice that the Grove connector has support for 2 signal pins. However, many of the
modules only require 1 signal pin (typically SIG0). In that case, SIG1 is a no connect (NC).
Since most Grove connectors typically only need 1 pin, the Grove connectors on the Grove
Base BoosterPack duplicate some pins of the BoosterPack connector. If you are using a Grove
module that needs both signal pins (i.e. a dual-axis joystick -- X axis = SIG1, Y axis = SIG0),
you should avoid using the adjacent connector since the repeated pin is taken up by the 2-axis
joystick Grove module. This is called a pin conflict, which will cause problems.
BoosterPack Pinout Standard

![BoosterPack Pinout Diagram]

Legend

Pin function

White boxes indicate functions that are not yet available on any existing LaunchPads. However, these functions are defined in the standard to future-proof the pinout.

GPIO

Some LaunchPads do not comply with this GPIO pin (e.g., MSP430FR592 LaunchPad uses this pin for programming/debugging). Be aware of this when making a BoosterPack.

[]

The exclamation point indicates the GPIO is interruptable.

I2C

Most LaunchPads have true hardware enabled I2C at these pins, but some LaunchPads may not. If a hardware I2C is available a software-emulated I2C is needed to adhere to standard.

Check the documentation of specific LaunchPad boards to confirm compatibility with the BoosterPack standard. While most LaunchPads comply with the standard, there may be some deviations.

Also note that LaunchPads usually offer more than one function at a specific pin. Be aware of pin muxing for additional features and capabilities at each pin.
Using the Grove Base BoosterPack

Using a 40-pin LaunchPad (i.e. MSP-EXP430F5529LP, MSP-EXP432P401R, EK-TM4C123GXL, etc) Recommended

The Grove Base BoosterPack was designed in a way to leverage pin numbers 21 through 40. Visually, these are the inner 20 pins of the BoosterPack connector. The pins are connected as shown in the table below:

Using the table below, developers should be able to read an analog value from a Grove module (i.e. potentiometer/turn knob) that is connected to Grove connector ‘J6’ by using the analogRead(24) API call with Energia.

<table>
<thead>
<tr>
<th>Type</th>
<th>Grove connector Label</th>
<th>GND</th>
<th>VCC</th>
<th>SIG1 (connection to the BoosterPack pin)</th>
<th>SIG0 (connection to the BoosterPack pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>J5</td>
<td>GND</td>
<td>3.3V</td>
<td>23 (analog capable pin)</td>
<td>22 (analog capable pin)</td>
</tr>
<tr>
<td>Analog</td>
<td>J6</td>
<td>GND</td>
<td>3.3V</td>
<td>25 (analog capable pin)</td>
<td>24 (analog capable pin)</td>
</tr>
<tr>
<td>Analog</td>
<td>J7</td>
<td>GND</td>
<td>3.3V</td>
<td>26 (analog capable pin)</td>
<td>25 (analog capable pin)</td>
</tr>
<tr>
<td>Analog</td>
<td>J8</td>
<td>GND</td>
<td>3.3V</td>
<td>27 (analog capable pin)</td>
<td>26 (analog capable pin)</td>
</tr>
<tr>
<td>Analog</td>
<td>J9</td>
<td>GND</td>
<td>3.3V</td>
<td>28 (analog capable pin)</td>
<td>27 (analog capable pin)</td>
</tr>
<tr>
<td>I2C</td>
<td>J10</td>
<td>GND</td>
<td>3.3V</td>
<td>10 (I2C SDA)</td>
<td>9 (I2C SCL)</td>
</tr>
<tr>
<td>UART</td>
<td>J11</td>
<td>GND</td>
<td>3.3V</td>
<td>4 (UART to MCU)</td>
<td>3 (UART from MCU)</td>
</tr>
<tr>
<td>SPI</td>
<td>J12</td>
<td>GND</td>
<td>3.3V</td>
<td>14 (SPI MISO)</td>
<td>7 (SPI CLK)</td>
</tr>
<tr>
<td>Digital</td>
<td>J13</td>
<td>GND</td>
<td>3.3V</td>
<td>39 (Digital/PWM pin)</td>
<td>40 (Digital/PWM pin)</td>
</tr>
<tr>
<td>Digital</td>
<td>J14</td>
<td>GND</td>
<td>3.3V</td>
<td>38 (Digital/PWM pin)</td>
<td>39 (Digital/PWM pin)</td>
</tr>
<tr>
<td>Digital</td>
<td>J15</td>
<td>GND</td>
<td>3.3V</td>
<td>37 (Digital/PWM pin)</td>
<td>38 (Digital/PWM pin)</td>
</tr>
<tr>
<td>Digital</td>
<td>J16</td>
<td>GND</td>
<td>3.3V</td>
<td>36 (Digital/PWM pin)</td>
<td>37 (Digital/PWM pin)</td>
</tr>
<tr>
<td>Digital</td>
<td>J17</td>
<td>GND</td>
<td>3.3V</td>
<td>35 (Digital/PWM pin)</td>
<td>36 (Digital/PWM pin)</td>
</tr>
</tbody>
</table>

Using a 20-pin LaunchPad (i.e., MSP-EXP430G2, MSP-EXP430FR5969, MSP-EXP430FR4133, etc)

If you are using a 20-pin LaunchPad, you can use jumpers or jumper wire to make the appropriate connections between a Grove connector & the BoosterPack connector.
Using your specific LaunchPad's pin out diagram, you can physically/electrically connect the Grove module to the appropriate pin. Pinout diagrams for each LaunchPad are available here: http://energia.nu/pin-maps/

With the help of these pin diagrams, you know which pin has the function you need. If you want to use Grove connector J8 for an analog Grove module (i.e. potentiometer knob), you can use the Energia pin maps to identify an analog-capable pin on the BoosterPack connector. Using a jumper or jumper wire, you can connect pin number 26 with the analog-capable pin that is available. For example, if you are using an MSP-EXP430G2 LaunchPad, you can use a jumper or jumper wire to connect pin 26 with pin 6.

[Add a picture here to show jumper/wire making the above connection]
http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.html

overview of the included Grove modules

DIGITAL MODULES

The Grove-Buzzer
What is it?
The Grove Buzzer module features a piezo buzzer that can be connected to digital outputs. It will emit a tone when the output is high. Alternatively it can be connected to a pulse-width modulation (PWM) capable output pin to generate various tones and sounds.

How to connect it?
This is a Digital module that should connect to a digital or PWM-capable pin (i.e. Grove connector J13 - J17)

How to program it?
In Energia, you can use either the digitalWrite(pin, state) API to buzz the piezo at a fixed tone. Or, you can use the analogWrite(pin, dutyCycle) or tone(pin, frequency, duration) function if you want to modulate a specific frequency or tone.

More details:

The Grove-Relay
What is it?
The Relay is a digital normally- open switch that controls a relay capable of switching much higher voltages and currents than your normal LaunchPad boards. When set to HIGH, the on-board LED on the Grove-Relay module will light up and the relay will close to allow current to flow. The peak voltage capability is 250V at 10 amps.

How to connect it?
This is a Digital module that should connect to a digital pin (i.e. Grove connector J13 - J17)

How to program it?
In Energia, you can use the digitalWrite(pin, state) API to close the relay.

More details:
The Grove-PIR Motion Sensor
What is it?
When any motion occurs within the detection range (3m by default), the sensor outputs a HIGH signal on its SIG0 pin.

How to connect it?
This is a digital module that should connect to a digital pin (i.e. Grove connector J13 - J17). This requires just a single signal pin, SIG0.

How to program it?
In Energia, you should be able to use the digitalRead(pin) API. This function will return back the state of the incoming signal from the motion sensor. If motion was detected, this function will return a 1, else 0.

More details:

The Grove-4-Digit Display
What is it?
The 4-Digit 7-segment display module usually takes 12 pins to control, but in this Grove module, a TM1637 was used to allow us to control the display with only two pins. In addition to displaying data using these two pins we can even change the brightness of the display. For projects that require a numeric display this board would be an excellent choice!

How to connect it?
This is a digital module that requires 2 digital pins (i.e. Grove connector J13 - J17). This requires both SIG1 and SIG0 (one clock pin & one data pin)

How to program it?
In Energia, you will need the Grove 4-Digit Display (DigitalTube) library. This library is available in the Grove wiki, which is linked below. Along with the library are a few example sketches that showcase how to use the library to display characters on the display.

If the library is installed in Energia, you can find it at:
File > Examples > Libraries > DigitalTube > [Examples]

More details:
The Grove-Ultrasonic Ranger Sensor

What is it?
This Grove-ultrasonic sensor is a non-contact distance measurement module. This sensor offers industrial performance & provides a detecting range of 3cm to 4 meters (~1cm of resolution). It features a transmitter & receiver. The module transmits ultrasonic waves that reflect off the nearest object & the receiver detects the “echo”. The time it takes for the receiver to see the reflected signal is how we can detect distance.

How to connect it?
This is a digital module that should connect to a digital pin (i.e. Grove connector J13 - J17). This requires just a single signal pin, SIG0.

How to program it?
In Energia, you will need the Grove-Ultrasonic Ranger Sensor library. This library is available in the Grove wiki, which is linked below. Along with the library are a few example sketches that showcase how to use the library to display the distance on the display (in either cm or inches).

If the library is installed in Energia, you can find it at:
File > Examples > Libraries > UltrasonicRanger > [Examples]

More details:

ANALOG MODULES

The Grove-Light Sensor

What is it?
The Light sensor module detects the light intensity of the environment. This is an analog Grove module that will return a voltage between 0V and 3.3V. The brighter the environment, the higher the output voltage.

How to connect it?
This is an analog module that should connect to an analog pin (i.e. Grove connector J5 - J9). This requires just a single signal pin, SIG0.

How to program it?
In Energia, you will be able to use the analogRead(pin) API. This function will return back the raw analog readings coming from the sensor. Depending on the resolution of the LaunchPad
ADC channels, the API will return a number between 0-255 (8-bit ADC), 0 - 1024 (10-bit ADC), or 0 - 4095 (12-bit ADC).

More details:

The Grove-Sound Sensor
What is it?
The Sound sensor module is a simple microphone. It can be used to determine the acoustic noise level of the environment. The resistance of the sensor decreases when the sound intensity of the environment increases. The value of output can be adjusted by the potentiometer knob on the Grove-Sound Sensor module.

How to connect it?
This is an analog module that should connect to an analog pin (i.e. Grove connector J5 - J9). This requires just a single signal pin, SIG0.

How to program it?
In Energia, you should be able to use the analogRead(pin) API. This function will return back the raw analog readings coming from the sensor. Depending on the resolution of the LaunchPad ADC channels, the API will return a number between 0-255 (8-bit ADC), 0 - 1024 (10-bit ADC), or 0 - 4095 (12-bit ADC).

More details:

The Grove-Moisture Sensor
What is it?
This Moisture Sensor can be used to detect the moisture of soil or judge if there is water around the sensor. The Moisture Sensor is very user-friendly: just insert it into the soil and then read the data. Thanks to this sensor, you can easily see when your house plant is thirsty! Perhaps you can have LaunchPad print out a message if moisture levels are too low: “Hey, I am thirsty now! Please give me some water.”

How to connect it?
This is an analog module that should connect to an analog pin (i.e. Grove connector J5 - J9). This requires just a single signal pin, SIG0.

How to program it?
In Energia, you should be able to use the analogRead(pin) API. This function will return back the raw analog readings coming from the sensor. Depending on the resolution of the
LaunchPad ADC channels, the API will return a number between 0-255 (8-bit ADC), 0 - 1024 (10-bit ADC), or 0 - 4095 (12-bit ADC).

More details:

The Grove-Temperature Humidity Sensor
What is it?
This module is an accurate temperature and humidity sensor. It consists of a capacitive sensor element used for measuring relative humidity and a negative temperature coefficient (NTC) thermistor used for measuring temperature.

How to connect it?
This is an analog module that should connect to an analog pin (i.e. Grove connector J5 - J9). This requires just a single signal pin, SIG0.

How to program it?
In Energia, you will need the Grove-Temperature and Humidity Sensor library. This library is available in the Grove wiki, which is linked below. Along with the library are a few example sketches that showcase how to use the library to display the temperature & humidity readings. Note that the sensor on this module is the DHT22.

NOTE: Since several DHT devices share this library, be sure to comment/uncomment the appropriate sensor within the library.

If the library is installed in Energia, you can find it at:
File > Examples > Libraries > Humidity_Temperature_Sensor > [Examples]

More details:

The Grove-Rotary Angle Sensor
What is it?
The potentiometer module produces an analog output between 0 and Vcc on SIG0. The angular range is 300 degrees with a linear change in the output voltage. This may also be known as a rotary angle sensor.

How to connect it?
This is an analog module that should connect to an analog pin (i.e. Grove connector J5 - J9). This requires just a single signal pin, SIG0.
How to program it?
In Energia, you should be able to use the analogRead(pin) API. This function will return back the raw analog readings coming from the sensor. Depending on the resolution of the LaunchPad ADC channels, the API will return a number between 0-255 (8-bit ADC), 0 - 1024 (10-bit ADC), or 0 - 4095 (12-bit ADC).

More details:
Installing the Energia IDE

Installing Energia
Energia is an open-source and community-driven development environment for LaunchPad kits. It is based on the popular Wiring framework, offering a large collection of easy-to-use functions and APIs. Energia support is available for many LaunchPad development kits across various TI microcontroller devices: MSP430/MSP432, TM4C, C2000, and CC3200.

Note that Energia is available for Windows, Linux & Mac. The link above explains how to install the required drivers & Energia on these various OS options. Once downloaded & installed, you will need to configure Energia for the specific LaunchPad you are using.

Quick Overview of the Energia IDE
SETTING UP THE ENERGY IDE

(1) Launch Energia
Once installed, go ahead and plug in your LaunchPad into the USB port of your computer. Then, double-click Energia.exe (Windows users) / Energia.app (Mac OS X users). Energia will start and an empty Sketch window will appear.

(2) Selecting the Serial Port
Select Serial Port from the Tools menu to view the available serial ports. On windows, they will be listed as COMXXX port and usually a higher number is the LaunchPad com port. On Mac OS X they will be listed as /dev/cu.uart-XXXX. On Mac OS X make sure to select the /dev/cu.uart-XXXX and NOT the /dev/tty.uart-XXX. If needed, check your computer’s device manager to verify which port to use.

Navigate to Tools > Serial Port [select your serial port]
(3) Select your board

Also, ensure that Energia is configured for the specific LaunchPad device you are using. You can do so by navigating to Tools > Board > [select your LaunchPad]

(4) Preparing Libraries

Go to https://github.com/Seeed-Studio/LaunchPad_Kit http://www.energia.nu/grovekitcode and download the latest zip file. This zip file includes example sketches & required libraries for each of the Grove modules in the Starter Kit. Unzip the zip file, and then copy the contents into the generic Energia folder on your computer.

- In Windows, you can unzip contents into this folder: [USERDIR] > My Documents > Energia
- In Mac, you can unzip contents into this folder: /Users/[USERDIR]/Documents/Energia.
- In Linux, you can unzip contents into this folder: /home/[USERDIR]/sketchbook

Here is how it should look in your directory:
Once you have the folder structure as shown above, you may have to restart Energia in order for the IDE to discover these new examples/libraries.

Note that these libraries and example projects are open source and available on github:
https://github.com/Seeed-Studio/LaunchPad_Kit
THE EXAMPLES

Example - 01 : Getting Started (Blinking LED)

WHAT ARE WE DOING HERE?
In this example, we will not be using any Grove modules. First, we'll learn how to blink one of the on-board LEDs that are featured on the LaunchPad development kit itself. All LaunchPad kits feature a few user LEDs, typically a red LED. By running the example code, you will see the LED switched on and off once per second.

THE CIRCUIT
We used the on-board red LED that is available on most LaunchPad kits. You don't need to add any other components.

CODE
This example is available here: File > Example > Basics > Blink

/*
 Blink
 The basic Energia example.
 Turns on an LED on for one second, then off for one second, repeatedly.
 Change the LED define to blink other LEDs.

 Hardware Required:
 * LaunchPad with an LED

 This example code is in the public domain.
 */

// most launchpads have a red LED
#define LED RED_LED

//see pins_energia.h for more LED definitions
//#define LED GREEN_LED

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(LED, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(LED, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW
}
RESULT
The LED on board will periodically switch on and off, with each state lasting for 1 second.

TIPS
The 2 main APIs we are using are `digitalWrite(pin, state)` & `delay(milliseconds)`. Note that we need to also use the `pinMode(pin, direction)` function to set the appropriate pin as an OUTPUT port before we can use the `digitalWrite` function for toggling it ON & OFF. Try changing the blink speed or controlling another LED!
Example - 02 : Playing Music (Buzzer)

WHAT ARE WE DOING HERE?
This example shows how to use the Grove buzzer module to play melodies. It sends a square wave of the appropriate frequency to the buzzer, generating the corresponding tone.

THE CIRCUIT

<table>
<thead>
<tr>
<th>Parts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Grove-Buzzer x1</td>
</tr>
<tr>
<td>● Grove cable x1</td>
</tr>
<tr>
<td>● Grove-Base BoosterPack x1</td>
</tr>
<tr>
<td>● LaunchPad Development Kit</td>
</tr>
</tbody>
</table>

Connections:
Plug the Buzzer module into Grove connector J14 on the BoosterPack. This will link the SIG pin of the buzzer to pin 39 of the LaunchPad.

CODE
This example is available here: File > Sketchbook > LaunchPad_Kit > Grove_Modules > buzzer

```c
/*
   Buzzer
   The example use a buzzer to play melodies. It sends a square wave of the appropriate frequency to the buzzer, generating the corresponding tone.

   The circuit:
   * Buzzer attached to pin39 (J14 plug on Grove Base BoosterPack)
   * one side pin (either one) to ground
   * the other side pin to VCC
   * LED anode (long leg) attached to RED_LED
   * LED cathode (short leg) attached to ground

   * Note:

   This example code is in the public domain.

```
/*

/* Macro Define */
#define BUZZER_PIN 39 /* sig pin of the buzzer */

int length = 15; /* the number of notes */
char notes[] = "ccggaagfeedc ";
int beats[] = { 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };
int tempo = 300;

void setup()
{
 /* set buzzer pin as output */
 pinMode(BUZZER_PIN, OUTPUT);
}

void loop()
{
 for(int i = 0; i < length; i++) {
 if(notes[i] == ' ') {
 delay(beats[i] * tempo);
 } else {
 playNote(notes[i], beats[i] * tempo);
 }
 delay(tempo / 2); /* delay between notes */
 }
}

/* play tone */
void playTone(int tone, int duration) {
 for (long i = 0; i < duration * 1000L; i += tone * 2) {
 digitalWrite(BUZZER_PIN, HIGH);
 delayMicroseconds(tone);
 digitalWrite(BUZZER_PIN, LOW);
 delayMicroseconds(tone);
 }
}

void playNote(char note, int duration) {
 char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' };
 int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956 };

 // play the tone corresponding to the note name
 for (int i = 0; i < 8; i++) {
 if (names[i] == note) {
 playTone(tones[i], duration);
 }
 }
}
RESULT
Your LaunchPad will play music! “Twinkle Twinkle Little Star” or “The Alphabet Song”

TIPS
The calculation of the tones is made using the mathematical operation:
\[
\text{timeHigh} = \frac{\text{period}}{2} = \frac{1}{(2 \times \text{toneFrequency})}
\]

Where the different tones are described as in the table below:

<table>
<thead>
<tr>
<th>Note</th>
<th>frequency</th>
<th>period</th>
<th>timeHigh</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>261 Hz</td>
<td>3830</td>
<td>1915</td>
</tr>
<tr>
<td>d</td>
<td>294 Hz</td>
<td>3400</td>
<td>1700</td>
</tr>
<tr>
<td>e</td>
<td>329 Hz</td>
<td>3038</td>
<td>1519</td>
</tr>
<tr>
<td>f</td>
<td>349 Hz</td>
<td>2864</td>
<td>1432</td>
</tr>
<tr>
<td>g</td>
<td>392 Hz</td>
<td>2550</td>
<td>1275</td>
</tr>
<tr>
<td>a</td>
<td>440 Hz</td>
<td>2272</td>
<td>1136</td>
</tr>
<tr>
<td>b</td>
<td>493 Hz</td>
<td>2028</td>
<td>1014</td>
</tr>
<tr>
<td>c</td>
<td>523 Hz</td>
<td>1912</td>
<td>956</td>
</tr>
</tbody>
</table>
Example - 03 : Controlling other electronics (Relay)
WHAT ARE WE DOING HERE?
This example showcases how to use the Grove-relay module to control a larger load, i.e. a desk lamp light. A 3V voltage signal can cause the relay to switch on, allowing current to flow through the connected appliance.

WARNING special care should be taken when using the Relay.

THE CIRCUIT

![Circuit Diagram]

Parts:
- Grove-Relay x1
- Grove cable x1
- Grove-Base BoosterPack x1
- LaunchPad Development Kit

Connections:
Plug the relay module into Grove connector J14 on the BoosterPack. This will link the SIG pin of the relay to pin 39 of the LaunchPad.

CODE
This is essentially the same as the blink LED code from Example #1. In this case, we are simply opening & closing the relay switch once per second.
This example is available here: File > Sketchbook > LaunchPad_Kit > Grove_Modules > relay

```cpp
/*
Relay
The basic Energia example.
This example code is in the public domain.
*/

// turn the re#define RELAY_PIN 39

// the setup routine runs once when you press reset:
void setup() {
    pinMode(RELAY_PIN, OUTPUT); // initialize the digital pin as an output.
}

// the loop routine runs over and over again forever:
void loop() {
    digitalWrite(RELAY_PIN, HIGH); // turn the relay on (HIGH is the voltage level)
    delay(1000); // wait for a second
    digitalWrite(RELAY_PIN, LOW); // turn it off by making the voltage LOW
```
delay(1000); // wait for a second
}

RESULT
Once a second, the relay switch will open & close. You should hear a clicking noise whenever the relay is switched open or close.

TIPS
Please pay attention to the maximum value of the current and voltage marked on the Relay.
Example - 04 : Displaying the Numbers (4-Digit Display)

WHAT ARE WE DOING HERE?
This example demonstrates how to display some digital numbers using a Grove-4-Digit Display.

THE CIRCUIT

Parts:
- Grove-4-Digit Display x1
- Grove cable x1
- G
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-rove-Base BoosterPack x1
- LaunchPad Development Kit

Connections:
Plug the Grove-4-Digit Display module into Grove connector J14 on the BoosterPack. This will link the 2 SIG pins of the 4 digit module to pins 38 (DIO) & 39 (CLK) of the LaunchPad.

CODE

This example is available here: File > Examples > DigitalTube > NumberFlow

/*
 * TM1637.cpp
 * A library for the 4 digit display
 *
 * Copyright (c) 2012 seeed technology inc.
 * Website : www.seeed.cc
 * Author : Frankie.Chu
 * Create Time: 9 April,2012
 */
* Change Log :
*
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#include "TM1637.h"
define CLK 39 //pins definitions for TM1637 and can be changed to other ports
define DIO 38
TM1637 tm1637(CLK,DIO);
void setup()
{
 tm1637.init();
 tm1637.set(BRIGHT_TYPICAL);//BRIGHT_TYPICAL = 2,BRIGHT_DARKEST = 0,BRIGHTTEST = 7;
}
void loop()
{
 int8_t NumTab[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};//0~9,A,b,C,d,E,F
 int8_t ListDisp[4];
 unsigned char i = 0;
 unsigned char count = 0;
 delay(150);
 while(1)
 {

}
i = count;
count ++;
if(count == sizeof(NumTab)) count = 0;
for(unsigned char BitSelect = 0; BitSelect < 4; BitSelect ++)
{
 ListDisp[BitSelect] = NumTab[i];
 i ++;
 if(i == sizeof(NumTab)) i = 0;
}
tm1637.display(0, ListDisp[0]);
tm1637.display(1, ListDisp[1]);
tm1637.display(2, ListDisp[2]);
tm1637.display(3, ListDisp[3]);
delay(300);
}

RESULT
Numbers will cycle through the display one by one. Pretty, isn't it?

TIPS
The Energia library offers control of both the content and the brightness of the display using just 2 digital pins of the LaunchPad.
Example - 05 : Reading the Potentiometer (Rotary Angle Sensor)
This example shows how to read the analog output coming from the Grove potentiometer module. We will be combining a few Grove modules in this example! By turning the potentiometer knob, we will display the analog reading value on the Grove 4-Digit display.

THE CIRCUIT

<table>
<thead>
<tr>
<th>Parts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Grove-Rotary Angle Sensor x1</td>
</tr>
<tr>
<td>● Grove-4-Digit Display x1</td>
</tr>
<tr>
<td>● Grove cable x2</td>
</tr>
<tr>
<td>● Grove-Base BoosterPack x1</td>
</tr>
<tr>
<td>● LaunchPad Development Kit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug the Grove-Rotary Angle Sensor module into Analog Grove connector J6 on the BoosterPack. This will link the SIG pins of the potentiometer to pin 24 of the LaunchPad.</td>
</tr>
</tbody>
</table>

Plug the Grove-4-Digit Display module into Grove connector J14 on the BoosterPack. This will link the 2 SIG pins of the 4 digit module to pins 38 (DIO) & 39 (CLK) of the LaunchPad.

CODE
This example is available here:
File > Sketchbook > LaunchPad_Kit > Grove_Modules > rotary_angle_sensor

/
 Rotary Angle Sensor
 Demonstrates analog input by reading an analog sensor on J16 of the Grove Base BoosterPack. The speed of the red LED on the LaunchPad will change depending on the position of the potentiometer knob. This example will also display the analog reading value on the Grove 4-digital display.

The circuit:

* Potentiometer attached to pin 24 (J6 on Grove Base BoosterPack)
* center pin of the potentiometer to the analog pin * one side pin (either one) to ground
* the other side pin to VCC (3.3V)

* Note: Because of unstable of the voltage, the value of the rotary angle sensor
The angle varies slightly from run to run even you don’t touch it.

Created by Oliver Wang

This example code is in the public domain.

http://www.seeedstudio.com/wiki/GROVE_-_Starter_Kit_v1.1b#Grove_-_Rotary_Angle_Sensor

#include "TM1637.h"

/* Macro Define */
#define CLK 39 /* 4-digital display clock pin */
#define DIO 38 /* 4-digital display data pin */
#define ROTARY_ANGLE_P 24 /* pin of rotary angle sensor */

/* Global Variables */
TM1637 tm1637(CLK, DIO); /* 4-digital display object */
int analog_value = 0; /* variable to store the value coming from rotary angle sensor */

int8_t bits[4] = {0}; /* array to store the single bits of the value */

/* the setup() method runs once, when the sketch starts */
void setup() {

 /* Initialize 4-digital display */
 tm1637.init();
 tm1637.set(BRIGHT_TYPICAL);
}

/* the loop() method runs over and over again */
void loop() {

 analog_value = analogRead(ROTARY_ANGLE_P); /* read the value from the sensor */
 memset(bits, 0, 4); /* reset array when we use it */
 for(int i = 3; i >= 0; i--) {
 /* get single bits of the analog value */
 bits[i] = analog_value % 10;
 analog_value = analog_value / 10;
 tm1637.display(i, bits[i]); /* display by 4-digital display */
 }
 delay(100);
}
RESULT
A digital number corresponding to the analog reading coming from the potentiometer knob will display on the 4-Digit Display module. Note that depending on the resolution of your LaunchPad kit’s ADC (analog-to-digital converter), your range may vary. For an 8-bit ADC, a number from 0-255 will show. For a 10-bit ADC, a number from 0-1023 will show. For a 12-bit ADC, a number from 0-4095 will be displayed on 4-Digit Display. Turn the knob to see the values change on the 4-Digit Display!

TIPS
The rotary angle sensor is a very useful device. When it is connected with VCC (3.3V) across its outer pins, the middle pin will present the value of the signal between 0 and VCC (3.3V). This is a useful component for receiving inputs from the outside world, i.e. human input.
Example - 06 : Sensing the Light (Light Sensor)

WHAT ARE WE DOING HERE?

This example reads the amount of light incident on the Grove-Light Sensor and displays the reading on the Grove 4-Digit Display. This is similar to the previous example except we are now using the ambient light sensor instead of the potentiometer rotary angle knob.

THE CIRCUIT

<table>
<thead>
<tr>
<th>Parts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Grove-Ambient Light Sensor x1</td>
</tr>
<tr>
<td>● Grove-4-Digit Display x1</td>
</tr>
<tr>
<td>● Grove cable x2</td>
</tr>
<tr>
<td>● Grove-Base BoosterPack x1</td>
</tr>
<tr>
<td>● LaunchPad Development Kit</td>
</tr>
</tbody>
</table>

Connections:

Plug the Grove-Ambient Light Sensor module into Analog Grove connector J6 on the BoosterPack. This will link the SIG pins of the potentiometer to pin 24 of the LaunchPad.

Plug the Grove-4-Digit Display module into Grove connector J14 on the BoosterPack. This will link the 2 SIG pins of the 4 digit module to pins 38 (DIO) & 39 (CLK) of the LaunchPad.

CODE

This example is

*File > sketchbook > LaunchPad_Kit > Grove_Modules > light_sensor

*Note that this code is pretty much identical to the rotary angle example above.

/*

Light Sensor
A simple program that display the value of light incident on the grove-light-sensor by grove-4-digital-display, this example is similar to grove-rotary-angle-sensor

The circuit:
* grove-4-digital-display attached to dio9&dio10 (IIC plug on Grove Base BoosterPack)
* sig pin of the light sensor to the analog pin
* one side pin (either one) to ground
* the other side pin to VCC
* Note:

Created by Oliver Wang

This example code is in the public domain.

#include "TM1637.h"

/* Macro Define */
#define CLK 39 /* 4-digital display clock pin */
#define DIO 38 /* 4-digital display data pin */
#define LIGHT_SENSOR 24 /* pin of grove light sensor */

/* Global Variables */
TM1637 tm1637(CLK, DIO); /* 4-digital display object */
int analog_value = 0; /* variable to store the value coming from rotary angle sensor */
int8_t bits[4] = {0}; /* array to store the single bits of the value */

/* the setup() method runs once, when the sketch starts */
void setup() {

/* Initialize 4-digital display */
tm1637.init();
tm1637.set(BRIGHT_TYPICAL);
}

/* the loop() method runs over and over again */
void loop() {

analog_value = analogRead(LIGHT_SENSOR); /* read the value from the sensor */
memset(bits, 0x00, 4); /* reset array when we use it */
for(int i = 3; i >= 0; i--) {
/* get single bits of the analog value */
bits[i] = analog_value % 10;
analog_value = analog_value / 10;
tm1637.display(i, bits[i]); /* display by 4-digital display */
}
}
RESULT
The value will be displayed on 4-Digit Display when you shine a light on the light sensor. Note that depending on the resolution of your LaunchPad kit’s ADC (analog-to-digital converter), your range may vary. For an 8-bit ADC, a number from 0-255 will show. For a 10-bit ADC, a number from 0-1023 will show. For a 12-bit ADC, a number from 0-4095 will be displayed on 4-digital-display. Watch the values change as you present light to the sensor.

TIPS
Now that we can tell how bright it is in the environment, try to turn an LED on when the room is too dark.
Example - 07: Turning on an LED by Sound (Sound Sensor)

WHAT ARE WE DOING HERE?
This example program shows how to use the sound sensor (microphone). When the incoming sound amplitude exceeds a threshold, we will turn an LED on for 1 second.

THE CIRCUIT

Parts:
- Grove-Sound Sensor x1
- Grove cable x1
- Grove-Base BoosterPack x1
- LaunchPad Development Kit

Connections:
Plug the sound sensor module into Analog Grove connector J6 on the BoosterPack. This will link the SIG pin of the microphone to pin 24 of the LaunchPad.

CODE

This example is available here:
File > Sketchbook > LaunchPad_Kit > Grove_Modules > sound_sensor

Note that depending on your LaunchPad’s ADC resolution, you may have to adjust the THRESHOLD_VALUE for the desired sensitivity. For 8-bit ADC 200 is acceptable, for 10-bit ADC 500, and for 12-bit 3000 is good.

/ *
Sound Sensor
A simple program demonstrate sound sensor senses a sound that is up to the threshold you set
in the code, the LED is on for 1s.

The circuit:
* sig pin of the sound sensor to the analog pin 24 (J6 plug on Grove Base BoosterPack)
* one side pin (either one) to ground
* the other side pin to +VCC
* LED anode (long leg) attached to RED_LED
* LED cathode (short leg) attached to ground

* Note:
This example code is in the public domain.

/*
#define SOUND SENSOR 24 /* sound sensor pin */
#define LED RED_LED /* LED pin */
#define THRESHOLD_VALUE 3000 /* Depending on your LaunchPad’s ADC resolution you may have to adjust the threshold */

#define ON HIGH /* led on */
#define OFF LOW /* led off */
#define _handle led(x) digitalWrite(LED, x) /* handle led */

/* Global Variables */
int sound_value = 0;

void setup() {

 /* Initialize led pin */
 pinMode(LED, OUTPUT);
 digitalWrite(LED, LOW);
}

void loop() {

 /* read the sound value */
 sound_value = analogRead(SOUND SENSOR);
 /* if the value is larger than threshold, turn on led */
 if(sound_value > THRESHOLD_VALUE) {
 _handle led(ON);
 delay(1000);
 }
 _handle led(OFF);
}

RESULT
The red LED will be turned on for about 1 second when you clap your hands or snap your fingers near the microphone.

TIPS
Analog Sound Sensor is typically used for detecting the loudness in your surroundings. Noise is a continuous signal. For a given sample rate (fs), the bandlimit (B) for perfect reconstruction is B ≤ fs/2 according to the Nyquist Shannon sampling theorem.
Example - 08 : Is Anybody Here? (PIR Motion Sensor)

WHAT ARE WE DOING HERE?
The following sketch demonstrates a simple application of sensing motion. When someone moves in its detecting range, the output of the application will be high through its SIG0 pin and the LED will turn on. Otherwise, the output will be LOW. Note that the PIR motion sensor is very sensitive to motion!

THE CIRCUIT

![Circuit Diagram]

Parts:
- Grove-PIR Motion Sensor x1
- Grove cable x1
- Grove-Base BoosterPack x1
- LaunchPad Development Kit

Connections:
Plug the motion sensor module into Digital Grove connector J14 on the BoosterPack. This will link the SIG pin of the motion sensor to pin 39 of the LaunchPad.

CODE

This example is available here:
File > Sketchbook > LaunchPad_Grove_Kit> pir_motion_sensor

```c
/*
 * Grove-PIR-Motion-Sensor
 * The following sketch demonstrates a simple application of sensing motion.
 * When someone moves in its detecting range, it will output High through its
 * SIG pin and the LED will light. Otherwise, it will output LOW. Then you can
 * use it to detect the motion of people.
 *
 * The circuit:
 * * sig pin of the Grove-PIR-Motion-Sensor to pin39 (J14 plug on Grove Base BoosterPack)
 * * one side pin (either one) to ground
 * * the other side pin to +VCC
 * * LED anode (long leg) attached to RED_LED
 * * LED cathode (short leg) attached to ground
 *
 * * Note: Position the trig jumper on N_Retrig to ensure
 *
 * This example code is in the public domain.
 */
```

/*/
/* Macro Define */
#define PIR_MOTION_SENSOR 39 /* sig pin of the PIR sensor */
#define LED RED_LED /* led */
#define ON HIGH /* led on */
#define OFF LOW /* led off */
#define _handle_led(x) digitalWrite(LED, x) /* handle led */

/* the setup() method runs once, when the sketch starts */
void setup() {
 pinMode(PIR_MOTION_SENSOR, INPUT); /* declare the sig pin as an INPUT */
 pinMode(RED_LED, OUTPUT); /* declare the red_led pin as an OUTPUT */
 _handle_led(OFF);
}

/* the loop() method runs over and over again */
void loop() {
 if(isPeopleDetected()) {
 _handle_led(ON); /* if we detect a people, turn on the led */
 } else {
 _handle_led(OFF); /* found nobody, turn off the light */
 }
}

/* judge if there is a people around */
boolean isPeopleDetected() {
 int sensor_val = digitalRead(PIR_MOTION_SENSOR); /* read sig pin */
 if(HIGH == sensor_val) {
 return true; /* people detected */
 } else {
 return false; /* people un-detected */
 }
}

RESULT
When a person comes closer to the PIR sensor, the red LED will be turned on.
TIPS
Now that you know how to use the PIR sensor to detect motion, try to pair this with other Grove modules, i.e. buzz the buzzer or trigger the relay when motion is detected.
Example - 09: Taking Care of Your Plants (Moisture Sensor)

WHAT ARE WE DOING HERE?

The following sketch demonstrates a simple application of sensing the moisture in soil. With this, you can know whether your plant needs water or not by observing the results from the output of the sensor.

THE CIRCUIT

<table>
<thead>
<tr>
<th>Parts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Grove-Moisture Sensor x1</td>
</tr>
<tr>
<td>- Grove-4-Digit Display x1</td>
</tr>
<tr>
<td>- Grove cable x2</td>
</tr>
<tr>
<td>- Grove-Base BoosterPack x1</td>
</tr>
<tr>
<td>- LaunchPad Development Kit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug the Grove-Moisture Sensor module into Analog Grove connector J6 on the BoosterPack. This will link the SIG pin of the moisture sensor to pin 24 of the LaunchPad.</td>
</tr>
<tr>
<td>Plug the Grove-4-Digit Display into Digital Grove connector J14. This will link the 2 SIG pins (CLK & DIO) of the 4 digit module to pins 38 & 39 of the LaunchPad.</td>
</tr>
</tbody>
</table>

CODE

This example is available here:

`File > Sketchbook > LaunchPad_Grove_Kit> moisture_sensor`

Note that you may need to adjust the THRESHOLD_VALUE for your desired sensitivity.

/*
 Moisture-Sensor
 The following sketch demonstrates a simple application of sensing the moisture of the soil. You can know whether a plant needs water or not by observing the results that the sensor outputs.

 The circuit:
 * Moisture-Sensor attached to pin 24 (J6 plug on Grove Base BoosterPack)
 * one side pin (either one) to ground
 * the other side pin to +VCC
 * LED anode (long leg) attached to RED_LED
 * LED cathode (short leg) attached to ground
*/
* Note:

This example code is in the public domain.

http://seeedstudio.com/wiki/Grove_-__Moisture_Sensor

*/
#include "TM1637.h"

/* Macro Define */
#define CLK 39 /* 4-digital display clock pin */
#define DIO 38 /* 4-digital display data pin */
#define BLINK_LED RED_LED /* blink led */
#define MOISTURE_PIN 24 /* pin of moisture sensor */
#define THRESHOLD_VALUE 300 /* threshold for watering the flowers */

#define ON HIGH /* led on */
#define OFF LOW /* led off */
#define _handle_led(x) digitalWrite(BLINK_LED, x) /* handle led */

/* Global Variables */
TM1637 tm1637(CLK, DIO); /* 4-digital display object */
int analog_value = 0; /* variable to store the value coming from rotary angle sensor */
int8_t bits[4] = {0}; /* array to store the single bits of the value */

/* the setup() method runs once, when the sketch starts */
void setup() {

/* Initialize 4-digital display */
 tm1637.init();
 tm1637.set(BRIGHT_TYPICAL);

 /* declare the red led pin as an OUTPUT */
 pinMode(BLINK_LED, OUTPUT);
}

/* the loop() method runs over and over again */
void loop() {

 analog_value = analogRead(MOISTURE_PIN); /* read the value from the sensor */

 /* if the value is smaller than threshold, turn on led */
 if(analog_value < THRESHOLD_VALUE) {
 _handle_led(ON);
 }
}
```c
} else {
    _handle_led(OFF);
}

memset(bits, 0, 4);  /* reset array when we use it */
for(int i = 3; i >= 0; i--) {
  /* get single bits of the analog value */
  bits[i] = analog_value % 10;
  analog_value = analog_value / 10;
  tm1637.display(i, bits[i]);  /* display by 4-digital display */
}
delay(200);
```

RESULT
If a plant needs water, the red LED of the LaunchPad will be turned on. Note that depending on
the resolution of your LaunchPad kit's ADC (analog-to-digital converter), your range may vary.
For an 8-bit ADC, a number from 0-255 will show. For a 10-bit ADC, a number from 0-1023 will
show. For a 12-bit ADC, a number from 0-4095 will be displayed on 4-Digit Display. Carefully
dip the moisture sensor into water & watch the values change on the 4-Digit Display. Also watch
the red LED turn off and on.

TIPS
Moisture-Sensor is an analog sensor, by which you can measure the water amount that your
plant needs. Try to buzz a buzzer when your plant needs watering.
Example - 10 : Sensing Distance (Ultrasonic Ranger Sensor)

WHAT ARE WE DOING HERE?
This example shows how to measure the distance to obstacles using the ultrasonic sensor and display the value on a 4-Digit Display (centimeters).

THE CIRCUIT

<table>
<thead>
<tr>
<th>Parts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grove-Ultrasonic Ranger Sensor x1</td>
</tr>
<tr>
<td>• Grove-4-Digit Display x1</td>
</tr>
<tr>
<td>• Grove cable x2</td>
</tr>
<tr>
<td>• Grove-Base BoosterPack x1</td>
</tr>
<tr>
<td>• LaunchPad Development Kit</td>
</tr>
</tbody>
</table>

Connections:
Plug the Grove-Ultrasonic Sensor module into Digital Grove connector J15 on the BoosterPack. This will link the SIG pin of the ultrasonic sensor to pin 38 of the LaunchPad.

Plug the Grove-4-Digit Display into Digital Grove connector J13. This will link the 2 SIG pins (CLK & DIO) of the 4 digit module to pins 39 & 40 of the LaunchPad.

CODE
This example is available here: File > Examples > Grove_Ultrasonic_Ranger > Ultrasonic4DigitDisplay

/*
Ultrasonic-Ranger to 4-digit-display
Measure the distance to obstacles in front and display the value on
4-digital-display

The circuit:
* Ultrasonic Ranger attached to SPI plug on Grove Base BoosterPack
* one side pin (either one) to ground
* the other side pin to +VCC
* LED anode (long leg) attached to RED_LED
* LED cathode (short leg) attached to ground

* Note:
This example code is in the public domain.

http://www.seeedstudio.com/wiki/Grove_-_Ultrasonic_Ranger
*/

#include "TM1637.h"
#include "Ultrasonic.h"
/* Macro Define */
#define CLK 40 /* 4-digital display clock pin */
#define DIO 39 /* 4-digital display data pin */
#define BLINK_LED RED_LED /* blink led */
#define ULTRASONIC_PIN 38 /* pin of the Ultrasonic Ranger */

/* Global Variables */
TM1637 tm1637(CLK, DIO); /* 4-digital display object */
Ultrasonic ultrasonic(ULTRASONIC_PIN); /* Ultrasonic Ranger object */
int distance = 0; /* variable to store the distance to obstacles in front */
int blink_interval = 0; /* led delay time */
int8_t bits[4] = {0}; /* array to store the single bits of the value */

/* the setup() method runs once, when the sketch starts */
void setup() {

 /* Initialize 4-digital display */
 tm1637.init();
 tm1637.set(BRIGHT_TYPICAL);

 /* declare the led pin as an OUTPUT */
 pinMode(RED_LED, OUTPUT);

}

/* the loop() method runs over and over again */
void loop() {

 distance = ultrasonic.MeasureInCentimeters(); /* read the value from the sensor */

 memset(bits, 0, 4); /* reset array when we use it */
 for(int i = 3; i >= 0; i--) {
 /* get single bits of the analog value */
 bits[i] = distance % 10;
 distance = distance / 10;
 tm1637.display(i, bits[i]); /* display by 4-digital display */
 }
}
RESULT
The 4-Digit Display will show you the distance between the ultrasonic ranger and the object in front of it (in centimeters).

TIPS
Try to create a musical instrument by pairing this with the Grove-buzzer module & change the tone based on distance.
Example - 11: Feeling the Environment (Temperature and Humidity)

WHAT ARE WE DOING HERE?
This example allows you to read the value from the Grove-Temperature-Humidity sensor. The temperature & humidity values are displayed on the Grove 4-Digit Display.

THE CIRCUIT

Parts:
- Grove-Temp & Humidity Sensor x1
- Grove-4-Digit Display x1
- Grove cable x2
- Grove-Base BoosterPack x1
- LaunchPad Development Kit

Connections:
Plug the Grove-Temp & Humidity Sensor module into Analog Grove connector J6 on the BoosterPack. This will link the SIG pin of the ultrasonic sensor to pin 24 of the LaunchPad.

Plug the Grove-4-Digit Display into Digital Grove connector J14. This will link the 2 SIG pins (CLK & DIO) of the 4 digit module to pins 38 & 39 of the LaunchPad.

CODE
This example is available here: File > Example > LaunchPad_Kit> temp_humi_sensor

/*
Grove-Temperature-Humidity Sensor
Read value from grove-temperature-humidity sensor then display on grove-4-digital-display

The circuit:
* 4-digital-display attached to pin38 & pin39 (J14 plug on Grove Base BoosterPack)
* sig pin of the Grove-Temperature-Humidity Sensor to the analog pin 24 (Grove connector J6)
* one side pin (either one) to ground
* the other side pin to +VCC
* LED anode (long leg) attached to RED_LED
* LED cathode (short leg) attached to ground
* */
* Note: Put your hands on Grove-Temperature-Humidity Sensor, both of the value will rise.

4-digital-display:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature : humidity</td>
</tr>
<tr>
<td>---------------</td>
</tr>
</tbody>
</table>

This example code is in the public domain.

*/

#include "TM1637.h"
#include "DHT.h"

/* Macro Define */
#define CLK 39 /* 4-digital display clock pin */
#define DIO 38 /* 4-digital display data pin */
#define BLINK_LED RED_LED /* blink led */
#define TEMP_HUMI_PIN 24 /* pin of temperature&humidity sensor */

/* Global Varibles */
TM1637 tm1637(CLK, DIO); /* 4-digital display object */
DHT dht(TEMP_HUMI_PIN, DHT22); /* temperature&humidity sensor object */

int8_t t_bits[2] = {0}; /* array to store the single bits of the temperature */
int8_t h_bits[2] = {0}; /* array to store the single bits of the humidity */

/* the setup() method runs once, when the sketch starts */
void setup() {
 tm1637.init(); /* initialize 4-digital display */
 tm1637.set(BRIGHT_TYPICAL); /* set the brightness */
 tm1637.point(POINT_ON); /* light the clock point "." */
 dht.begin(); /* initialize temperature humidity sensor */
 pinMode(RED_LED, OUTPUT); /* declare the red_led pin as an OUTPUT */
}

/* the loop() method runs over and over again */
void loop() {
 int _temperature = dht.readTemperature(); /* read the temperature value from the
The first two digits display the temperature (celsius) and the next two digits display humidity (%).

TIPS
When paired with the Grove-Moisture module, you can create a greenhouse monitoring system.
LET'S USE OUR NEW KNOWLEDGE TO BUILD A FEW PROJECTS
Do you think you can build the projects below on your own?

PROJECT ONE: Intelligent Tulip Water Reminder Device
WHAT ARE WE DOING HERE?
Decorate your room with tulips, and make your home a pleasant space. But what if we are too busy to take care of the lovely tulips? Perhaps we can build a device that will remind us when they are thirsty! We can enable our plants to reach out for help using the Moisture Sensor, which can detect the electric resistance of the soil, and thus show us the soil moisture using the 4-Digit Display module.

THE RECOMMENDED HARDWARE:

<table>
<thead>
<tr>
<th>The Grove Base BoosterPack</th>
<th>The Grove-Relay Module</th>
<th>The Grove-Moisture Sensor Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Grove-4-digit-display Module</td>
<td>The Grove-Buzzer Module</td>
<td></td>
</tr>
</tbody>
</table>

DESIRED RESULTS:
When the moisture is below the value you have set, the buzzer will respond with a beeping noise, reminding you that your plants are in need of water. At this moment, we can also use the Relay to open a valve to release water onto your tulips.
PROJECT TWO: Intelligent Lamp

WHAT ARE WE DOING HERE?

How about we create a project for home automation? For example, when night falls or if motion is detected, perhaps we can turn on a lamp in your room automatically. When no one is around or the day dawns, it can also automatically turn off. Now, let’s try to work our magic with the help of a few Grove modules!

THE RECOMMENDED HARDWARE:

<table>
<thead>
<tr>
<th>The Grove Base BoosterPack</th>
<th>The Grove-Relay Module</th>
<th>The Grove-PIR Motion Sensor Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Grove-Ambient Light Sensor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESIRED RESULTS:

When someone gets closer, the motion sensor will detect presence & we can turn on the lamp by closing the signal on the relay.

CREATE CAPTURE USING CC3100 WI-FI BOOSTERPACK INTRODUCE TEMBOO?