Seeeduino v4.2

Seeeduino v4.2 is an Open Source, Arduino-compatible ATmega328 MCU development board. We think Seeeduino v4.2 is one of the best Arduino derivatives/compatibles available. Seeeduino v4.2 is feature rich, much more stable, easy-to-use and even good looking.

Seeeduino v4.2 is based the Arduino UNO bootloader, an ATmega16U2 as a UART-to-USB converter (basically work like an FTDI USB2UART chip). The board comes with an additional set of through-hole pads for all pins. These pads are aligned to 0.1" grid. This makes it easy to solder additional pin-headers to plug into breadboard or create your own attachment/shield with 0.1" dot-matrix general purpose PCBs.

You can program the board via a micro-USB cable. Also, you can pow er the board via a DC Jack input (7 to 15V DC) is acceptable. There is a sw itch to choose the system's supply voltage either 3.3V or 5V, which is very useful if you want to set the system to 3.3V to interact with low voltage sensors.

Finally, the three on-board Grove interfaces can make your board connect to Grove modules easily. Want to make something aw esome, maybe just a Seeeduino v4.2 and some Groves is enough.

Version

<table>
<thead>
<tr>
<th>Product Version</th>
<th>Changes</th>
<th>Released Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeeduino V4.0</td>
<td>Initial</td>
<td>Aug 15, 2014</td>
</tr>
<tr>
<td>Seeeduino V4.2</td>
<td>1. Cancel some pad on the top left corner.</td>
<td>Aug 24, 2015</td>
</tr>
<tr>
<td></td>
<td>2. Change the usb location to middle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Improve DCDC circuit to get a better performance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Add an I2C Grove connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Change some silkscreen and part location</td>
<td></td>
</tr>
</tbody>
</table>

Features

- Fully compatible with Arduino UNO
- ATmega328 microcontroller
- 14 Digital I/O Pins (6 PWM outputs)
- 6 Analog Inputs
- ISP Header
• Arduino UNO-R3 Shield Compatible
• Micro USB programming and power supply
• On-board Grove connectors
• 3.3/5V system operation power switch
• Additional pads aligned to 0.1" grid

Specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Jack Input</td>
<td>7-12V</td>
</tr>
<tr>
<td>DC Output Current-5V Pin</td>
<td>With Micro USB 500mA Max</td>
</tr>
<tr>
<td></td>
<td>With DC Jack Power 2000mA Max</td>
</tr>
<tr>
<td>DC Output Current-3V3 Pin</td>
<td>500mA Max</td>
</tr>
<tr>
<td>DC Current per I/O Pin</td>
<td>40mA</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>32 KB</td>
</tr>
<tr>
<td>RAM</td>
<td>2 KB</td>
</tr>
<tr>
<td>EEPROM</td>
<td>1 KB</td>
</tr>
<tr>
<td>Clock Speed</td>
<td>16 MHz</td>
</tr>
<tr>
<td>Dimension</td>
<td>68.6mm x 53.4mm</td>
</tr>
<tr>
<td>Weight</td>
<td>26g</td>
</tr>
</tbody>
</table>

Hardware Overview

The images below show an overview of Seeeduino v4.2 hardware features. The pin-out and alternate functions of various pins of Seeeduino v4.2 are shown in the pin-out diagram. This could be used as a quick reference.
USB Input:
USB Port is used to connect the board to your PC for programming and for powering up.

DC Input:
The DC power jack allows your Seeeduino board to be powered from a wall adapter so that you can supply more power to your project if needed. For example, when using DC motors or other high power devices. The DC input can be 7V-15V.

Grove Connectors:
SeeedStudio has a variety of sensors/devices that can make use of this I2C or UART connection. In addition, we sell independent Grove connectors to help you make your own sensor connections. The I2C Grove connector is also connected to analog pin A4 and A5 for SDA and SCL respectively if you would like to use those pins instead. The UART Grove connector is connected to digital pins 0 and 1 for RX and TX respectively.

ICSP:
This is the ICSP connection for the ATmega328P; it is located in the standard ICSP/SPI position for Arduino Uno, Due, Mega, and Leonardo compatible hardware (e.g. shields) that may use this connector. The SPI pins in this port: MISO, SCK, and MOSI, are also connected to digital pins 12, 13, and 11 respectively just like those of the Arduino Uno.

USB 2 Uart:
Pinout of USB-2-Uart. These pads can be used to interact with other UART devices by putting the on-board ATmega328 in reset mode. This makes Seeeduino V4.2 to be used as a USB2UART utility board.

System Power Switch:
Slide switch is used to change the logic level and operating voltage of the board to either 5V or 3.3V.

Reset:
This button is conveniently placed on the side to allow you to reset the Seeeduino board even when a shield is placed on top. This is not the case in other Arduino boards where the button is placed on top making it hard to access.

LED-D13:
The LED is connected to D13 pin of the board. This can be used as an on-board LED indicator for programs/sketches.
RX/TX Indicator:
The TX and RX LED indicators are connected to TX and RX of USB-to-UART chip. They work automatically, they let you know when the board is sending or receiving data respectively.

Warning
Please plug the USB cable gently, otherwise you may damage the interface.

Getting Started

Note
If this is your first time using Arduino, please refer to Getting Started with Arduino.

Hardware

- Step 1. Prepare a Seeeduino V4.2 and a Micro-USB cable.
- Step 2. Connect the Seeeduino V4.2 to your computer with the Micro-USB Cable.

Then the green power LED (labeled PWR) should go on.

Note
Please use the USB cable with 4 wires inside, the 2 wires cable can't transfer data. If you are not sure about the wire you have, you can click here to buy.

Software

Step 1. Install the Driver for Seeeduino V4.2.

For Windows

Note

Download Driver for Seeeduino V4
Plug in your board and wait for Windows to begin its driver installation process. After a few moments, the process will fail, despite best efforts.

Click on the Start Menu, and open up the Control Panel.

While in the Control Panel, navigate to System and Security. Next, click on System. Once the System window is up, open the Device Manager.

Look under Ports (COM & LPT). You should find an open port named "Seeeduino v4.2". If there is no COM & LPT section, look under "Other Devices" for "Unknown Device".

Right click on the "Seeeduino v4.2" port and choose the "Update Driver Software" option.

Next, choose the "Browse my computer for Driver software" option.

Finally, navigate to and select the driver file named "seeed_usb_serial.inf"

Windows will finish up the driver installation from there.

For Mac OSX and Linux

You don’t need to install any drivers.

Step 2. Launch the Arduino application.

Double-click the Arduino application (arduino.exe) you have previously installed.

!!Note

If the Arduino Software loads in a different language, you can change it in the preferences dialog. See the Arduino Software (IDE) page for details.

Step 3. Open the Blink example.

Find the LED blink example sketch: File > Examples > 01.Basics > Blink.

Step 4. Select your board.

You'll need to select the entry in the Tools > Board menu that corresponds to your Arduino. Select the Seeeduino v4.2.
Step 5. Select your serial port.

Select the serial device of the Arduino board from the Tools | Serial Port menu. This is likely to be COM3 or higher (COM1 and COM2 are usually reserved for hardware serial ports). To find out, you can disconnect your Arduino board and re-open the menu; the entry that disappears should be the Arduino board. Reconnect the board and select that serial port.
!!Note
On the Mac or Linux, this should be something with /dev/tty.USBmodem.

Step 6. Upload the program.

Now, simply click the "Upload" button in the environment. Wait a few seconds - you should see the RX and TX LED indicators on the board flashing. If the upload is successful, the message "Done uploading."

A few seconds after the upload finishes, you should see the pin 13 (L) LED on the board start to blink (in orange). If it does, congratulations! You've gotten Arduino up-and-running. If you have problems, please see the troubleshooting suggestions.
Application Ideas

- DIY
- IoT and Smart Home
- Robot
- Learning

Here is some funny project for your reference.

<table>
<thead>
<tr>
<th>Paper Man</th>
<th>Fingerprint Lock</th>
<th>Monitor Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desk Promo</th>
<th>Tiger Machine</th>
<th>Colorful Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make it Now</td>
<td>Make it Now</td>
<td></td>
</tr>
</tbody>
</table>
Resources

- [PDF] Download Wiki PDF
- [Eagle] Seeeduino V4.2 in EAGLE file
- [PDF] Seeeduino V4.2 in PDF
- [Eagle] Seeeduino V4.0 in EAGLE file
- [PDF] Seeeduino V4.0 in PDF
- [Datasheet] ATmega328P
- [Datasheet] ATmega16U2
- [References] Getting Started with Arduino
- [References] Arduino Language Reference
- [References] Download the Arduino Software(IDE)
- [References] Arduino FAQ
- [References] Arduino Introduction
- [References] Wikipedia page for Arduino
- [References] How to fit RF Explorer 3G+ IoT modules on Seeeduino

FAQs

Please click here to see all Seeeduino V4.2 FAQs.